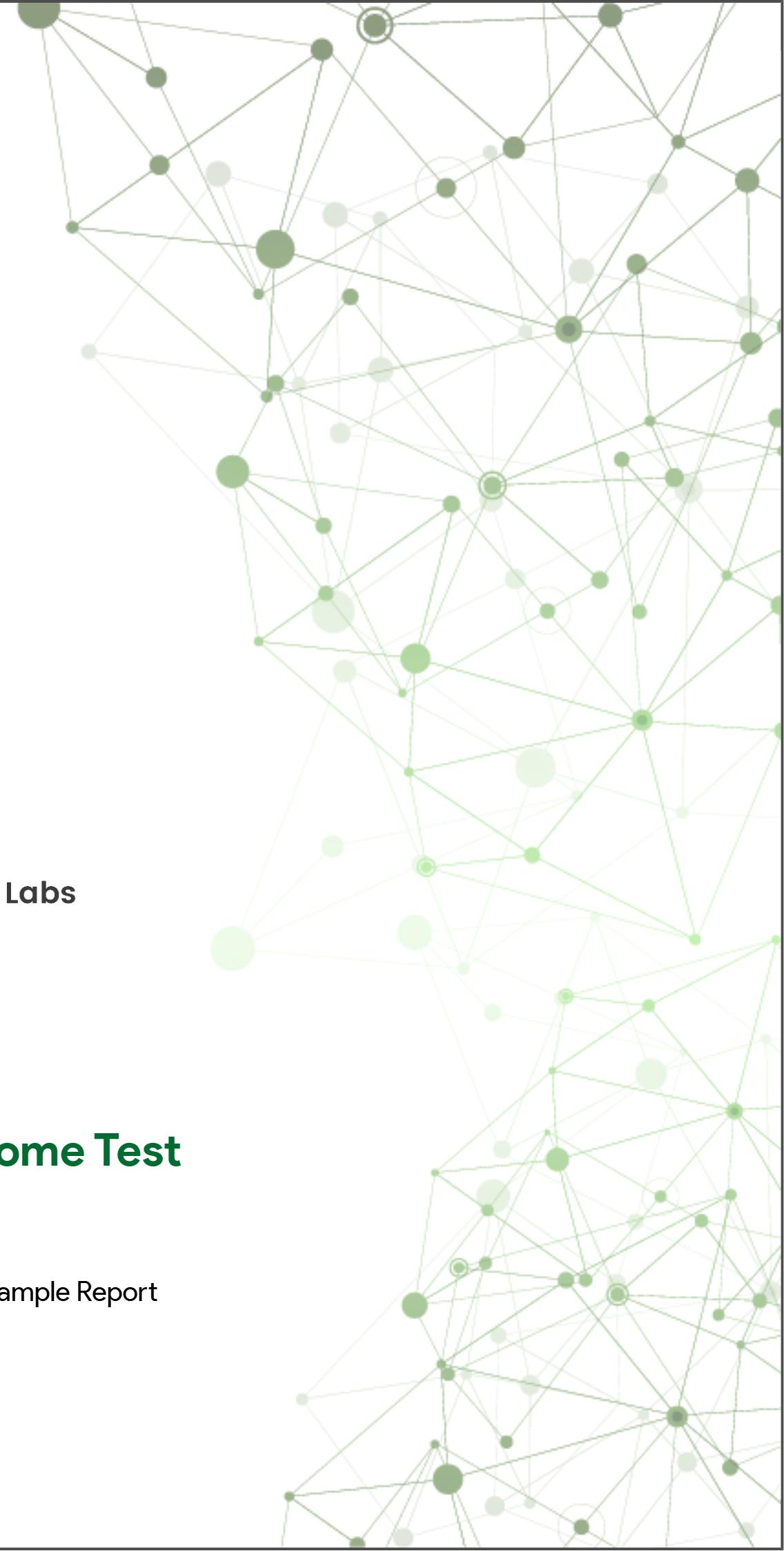


EverWell Labs


GI Axis

Gut Microbiome Test

Sample ID :

Patient Name : Example Report

Sample Date :

Test Report Index

After analysing thousands of microbes, YourGutMap's test report is broken down into three sections:

Module 1 = Gut Interaction Insights

A snapshot of how the current balance of the gut microbiome impacts health. This section contains colour coded dashboards and easy to understand graphs - to provide a detailed summary of the gut microbiome.

Page 04 Microbiome Diversity (Shannon Index)

Page 05 Gut Health Axes dashboard

Page 06 Gut Interaction Insights Dashboard

Module 2 = Microbial Analysis

Designed for health practitioners, this section explores the synergistic relationship between bacteria involved in 10 Gut Health Axes, and 20 Health Insights. With detailed explanations of roles and mechanisms of specific bacteria, more than 120 published studies to unlock these comprehensive gut health insights.

Page 08 Significant Bacteria - abundance and mechanisms

Page 09 Antibiotic Degradation

Page 10 - 20 Gut-Axes Deep Dive - pathways, mechanisms, and specific bacteria

Page 21 - 38 Gut Interaction Insights Dashboard - pathways, mechanisms, and specific bacteria

Module 3 = Unique Gut Based Nutrition Plan

Now that we have unlocked health insights based on the microbial balance, we can suggest tailored nutritional interventions to help naturally rebalance the gut microbiome.

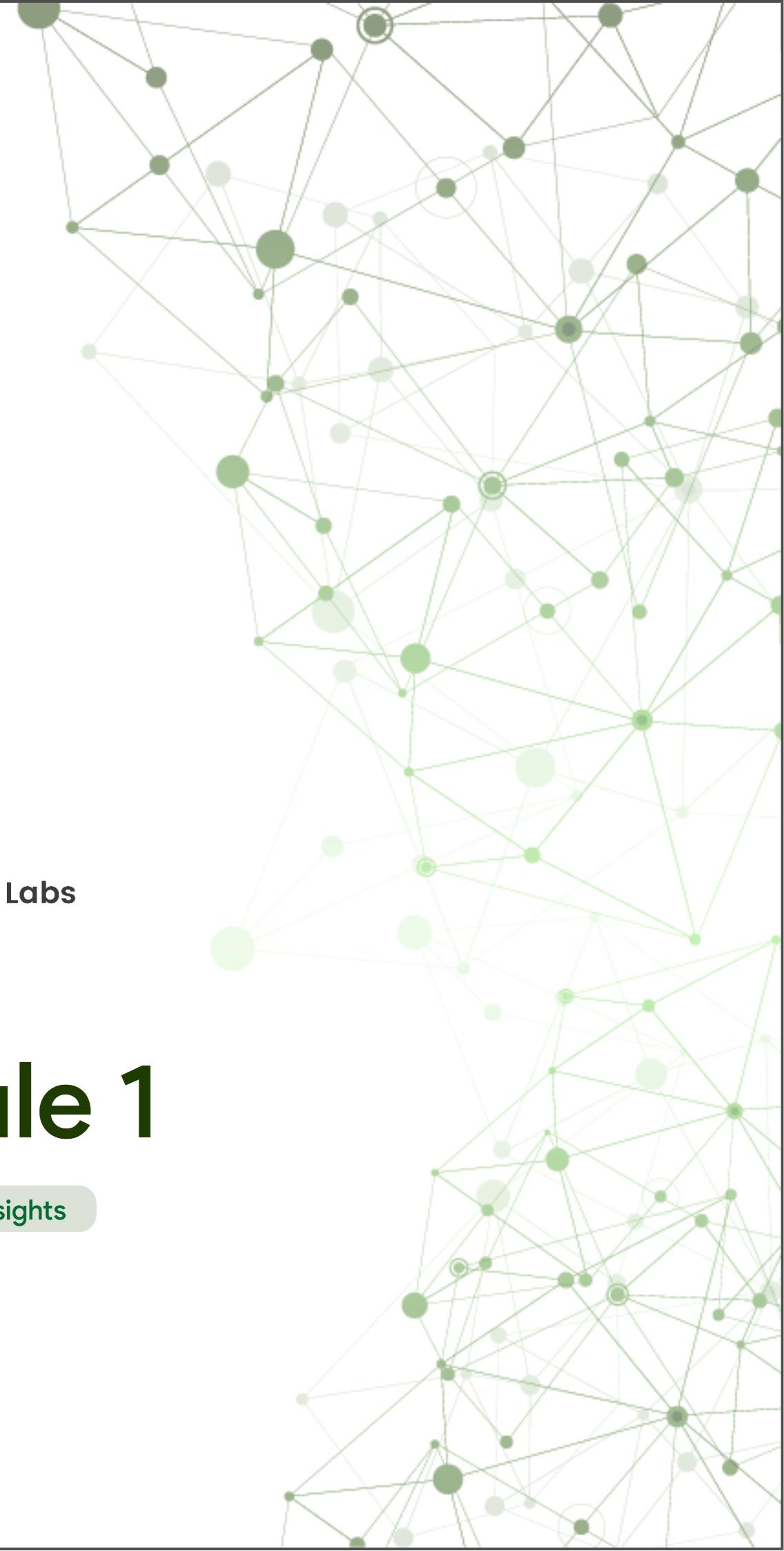
Based on the concept of starving the bacteria that need to be reduced, and feeding that bacteria that need to be increased - we assess the nutritional breakdown of over 200 foods.

Considering fibres, polyphenols, micronutrients, and many other factors - we provide suggestions to change the diet to help take care of imbalances and overgrowths.

Pages 40 - 43 Personalised Nutrition Recommendations

This report is intended for informational and educational purposes only and is not a substitute for medical advice, diagnosis, or treatment. Any dietary changes, supplements, or lifestyle changes should be made under the guidance of a qualified health practitioner. If you are experiencing significant symptoms or have a medical condition, please consult your doctor or a healthcare professional. The findings and recommendations in this report are based on current scientific research but are not intended to diagnose, treat, cure, or prevent any disease.

Sample ID :


Received :

EverWell Labs

Module 1

Gut Interaction Insights

Shannon Index

The Shannon Index is a widely used scientific measure that helps us understand the diversity of the gut microbiome.

It takes into account not just how many different types of bacteria are present, but also how evenly they are distributed. A higher Shannon score generally means the gut has a richer and more balanced community of bacteria, which is often linked in published research to better resilience, digestion, and overall health.

This section shows the specific diversity score. Subsequent sections of the report will breakdown what the bacteria balance means for specific health conditions and health goal

Microbiome Diversity - Shannon Index

Intestinal Permeability index

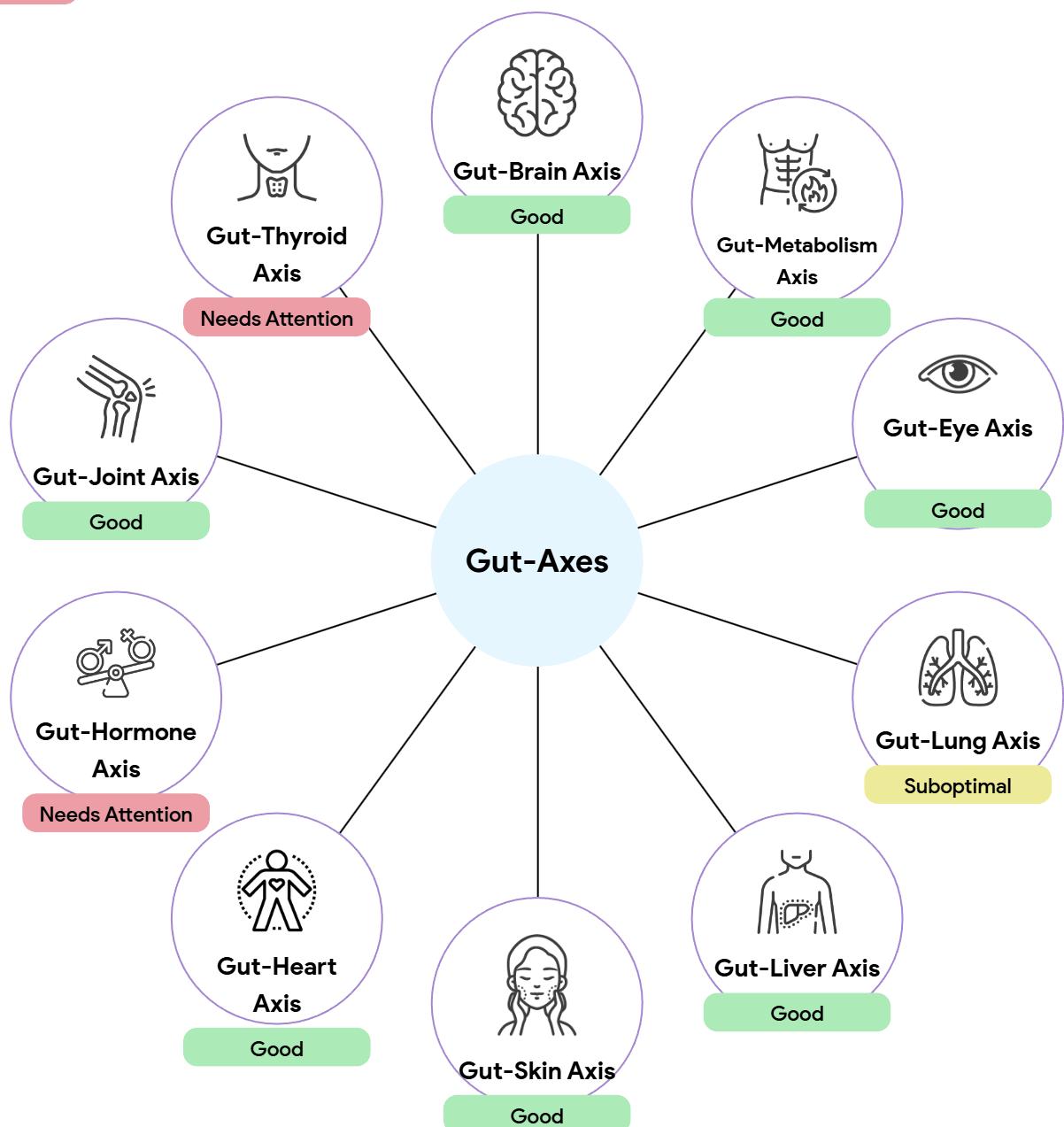
The Intestinal Permeability Index measures how well the gut barrier prevents harmful substances from entering the bloodstream. A high index suggests a healthy barrier, while a low index may indicate a "leaky gut" and risk of inflammation.

Microbiome Diversity - Intestinal Permeability index

Gut-Axes Dashboard

The gut doesn't just digest food - it also communicates with key systems throughout the body. These communication pathways are known as gut axes. The gut axes dashboard considers all of the individual bacteria that are involved in the specific gut axis, both those bacteria that have a beneficial effect, and those that can have negative effects as well.

Good


The bacteria balance is at an optimal level for the specific gut axis

Suboptimal

Some of bacteria levels show signs of imbalances for the specific gut axis

Needs Attention

The bacteria levels identified are imbalanced for the specific gut axis

Sample ID :

Received :

Gut Interaction Insights Dashboard

Based on the unique balance of bacteria in the gut, we've identified 20 key health insights that may be relevant to your overall well-being. These insights are drawn from the latest clinical research and reflect how specific bacteria in the microbiome are linked to various aspects of health.

Good

The bacteria balance is at an optimal level for the specific area of health

Suboptimal

Some of bacteria levels show signs of imbalances for the specific area of health

Needs Attention

The bacteria levels identified are imbalanced for the specific area of health

SCFA
Producers

Suboptimal

Inflammation
Index

Good

Immunity

Suboptimal

Histamine
Index

Good

Protein
Absorption

Needs Attention

Carbohydrate
Absorption

Good

Fat
Absorption

Good

Micronutrient
Absorption

Needs Attention

Bowel
Habits

Good

Fitness

Good

Mood
& Mental Health

Suboptimal

Autoimmunity

Good

Detoxification

Suboptimal

Stress
Resilience

Good

Longevity

Good

Insulin
Balance

Needs Attention

Bloating
& Gas

Good

ADHD

Good

ASD

Suboptimal

Sleep

Good

Sample ID :
Received :

EverWell Labs

Module 2

Microbial Analysis

Significant Bacteria

This section of the report details 9 of the most well researched and abundant bacteria in the gut microbiome.

Significant bacteria can give insights into the levels of bacteria in the gut compared to the average person, and optimal abundance ranges based on the latest clinical research.

It is important to note, that looking at these bacteria in isolation does not give the full picture, as bacteria in the gut have a synergistic relationship. The Gut-Axes and Health Insights sections will provide more detailed insight of bacteria levels for specific health concerns.

Bacteria	Role	Optimal Abundance %	Average Abundance %	Your Abundance %
<i>Faecalibacterium prausnitzii</i>	Butyrate-producing; supports anti-inflammatory signalling and gut lining repair.	0.188 - 2.62%	~1.084%	5.3671
<i>Akkermansia muciniphila</i>	Degrades mucin to strengthen the gut barrier and regulate immune responses.	0.0012 - 0.28%	~0.0084%	4.3232
<i>Bifidobacterium</i> spp.	Ferments fibres and supports immune maturation and gut wall integrity.	0.1239 - 4.497%	~1.006%	1.3900
<i>Bifidobacterium longum</i>	Reduces gut inflammation and promotes barrier and cognitive health.	0.0134 - 0.76%	~0.137%	0.4700
<i>Bifidobacterium adolescentis</i>	Produces SCFAs and assists in fibre breakdown and immune balance.	0.0022 - 0.35%	~0.018%	0.0490
<i>Lactobacillales</i> spp.	Produces lactic acid; supports microbial balance and mucosal immunity.	0.076 - 0.85%	~0.246%	0.2040
<i>Roseburia</i> spp.	Butyrate-producing; promotes colonic health and energy regulation.	0.124 - 1.55%	~0.611%	1.8385
<i>Coprococcus</i> spp.	Butyrate-producing; involved in gut-brain signalling and mood.	0.039 - 0.25%	~0.1445%	0.8029
<i>Adlercreutzia equolifaciens</i>	Converts soy isoflavones into equol with hormonal activity.	0.0035 - 0.072%	~0.017%	Not Detected
<i>Barnesiella</i> spp.	Competes with pathogens and supports microbial diversity.	0.0022 - 0.013%	~0.005%	0.1855
<i>Bacteroides thetaiotaomicron</i>	Breaks down plant fibres and supports nutrient absorption.	0.104 - 1.33%	~0.47%	0.0495
<i>Streptococcus thermophilus</i>	Aids lactose digestion and supports gut microbial balance.	0.00075 - 0.023%	~0.002%	0.1274
<i>Lactococcus lactis</i>	Produces lactic acid and supports mucosal immunity.	0.00048 - 0.0058%	~0.0012%	Not Detected
<i>Anaerostipes</i> spp.	Converts lactate to butyrate for gut energy and repair.	0.056 - 0.96%	~0.313%	0.8668
<i>Anaerobutyricum hallii</i>	Produces butyrate from lactate and acetate for gut health.	0.03 - 0.74%	~0.172%	Not Detected

Antibiotic Degradation

These bacteria have been shown in studies to be some of the most damaged by antibiotic use. It's important to consider these specific bacteria that these bacteria can also be substantially reduced through inadvertent antibiotic digestion, which can occur from the consumption of meat and dairy products.

Bacteria	Average Relative Abundance (%)	Healthy Relative Abundance (%)	Abundance if Damaged by Antibiotics (%)	Your Abundance (%)
Bifidobacterium spp.	5	0.1239 - 4.497%	~1.006%	1.3900
Lactobacillales spp.	3	0.076 - 0.85%	~0.246%	0.2040
Faecalibacterium prausnitzii	6	0.188 - 2.62%	~1.084%	5.3671
Akkermansia muciniphila	1	0.0012 - 0.28%	~0.0084%	4.3232
Ruminococcus spp.	4	0.007 - 0.174%	~0.021%	0.4513
Bacteroides spp.	25	5.885 - 31.13%	~17.051%	4.4168
Clostridium spp.	10	≤0.085%	~0.035%	1.7748

Gut-Axes Deep Dive

This section of the report provides a specific bacteria analysis for each of the gut axes. If there are signs of imbalance, the Personal Nutrition Guide will help to remodulate the gut microbiome.

Beneficial Bacteria - are the bacteria that have been shown in clinical research to influence a positive mechanism for the specific gut axis.

Disruptive Bacteria - these bacteria have been shown in clinical research to have negative effects on the specific gut-axis.

The mechanism for each bacteria is explained for each pathway, specific to the relevant gut axis.

Good

The bacteria balance is at an optimal level for the specific gut axis

Suboptimal

Some of bacteria levels show signs of imbalances for the specific gut axis

Needs Attention

The bacteria levels identified are imbalanced for the specific gut axis

Sample ID :

Received :

Gut-Skin Axis

Good

Beneficial Bacteria for Skin Health

These bacteria are associated with healthy, hydrated, low-inflammation skin and protection from acne, eczema, rosacea, and psoriasis.

Bacteria	Mechanism	Healthy Relative Abundance%	Your Abundance%
<i>Faecalibacterium prausnitzii</i>	Anti-inflammatory, gut barrier support	0.188 - 2.62%	5.3671
<i>Lactobacillales</i> spp.	Controls inflammation, helps eczema/acne	0.076 - 0.85%	0.2040
<i>Bifidobacterium</i> spp.	Enhances gut & skin barrier	0.1239 - 4.497%	1.3900
<i>Roseburia</i> spp.	Butyrate-producing; supports gut lining and reduces inflammation	0.124 - 1.55%	1.8385
<i>Blautia</i> spp.	SCFA-producing; supports gut barrier and balances immune response	0.297 - 3.89%	0.5694
<i>Parabacteroides distasonis</i>	Anti-inflammatory; helps regulate bile acids and metabolism	0.095 - 0.74%	1.0206
<i>Bacteroides fragilis</i>	Produces polysaccharide A; regulates immune system and gut barrier	0.0496 - 0.94%	0.0658

Disruptive Bacteria for Skin Health

Overgrowth of these may be linked to acne, rosacea, eczema, psoriasis, and general skin inflammation through increased gut permeability, endotoxin production, and systemic inflammation.

Bacteria	Mechanism	Healthy Relative Abundance%	Your Abundance%
<i>Prevotella</i> spp.	Can drive chronic inflammation	≤0.011%	Not Detected
<i>Clostridioides difficile</i>	Produces toxins; causes diarrhea and gut inflammation	≤0.047%	Not Detected
<i>Klebsiella pneumoniae</i>	Pathogenic; promotes gut inflammation and antibiotic resistance	≤0.011%	Not Detected
<i>[Ruminococcus] gnavus</i>	Produces inflammatory polysaccharides; linked to IBD and mood issues	≤0.34%	0.5128
<i>Bilophila wadsworthia</i>	Produces hydrogen sulfide; associated with inflammation and bile acid imbalance	≤0.457%	0.1385

Sample ID :
Received :

Studies referenced: (21), (22), (23), (24), (25)

Page 11 - 50

Gut-Thyroid Axis

Needs Attention

Beneficial Bacteria for Thyroid Axis

Studies have shown the potential positive impact of these bacteria in thyroid health

Bacteria	Mechanism	Healthy Relative Abundance%	Your Abundance%
<i>Bifidobacterium</i> spp.	Supports barrier, reduces inflammation, and aids micronutrient absorption (e.g., zinc, selenium)	0.1239 - 4.497%	1.3900
<i>Roseburia</i> spp.	Butyrate-producing; enhances gut barrier and reduces inflammation linked to thyroid function	0.124 - 1.55%	1.8385
<i>Faecalibacterium prausnitzii</i>	Anti-inflammatory SCFA producer; protects against autoimmune thyroid inflammation	0.188 - 2.62%	5.3671
<i>Bacteroides</i> spp.	Overgrowth linked to endotoxins and gut barrier dysfunction; may impact thyroid autoimmunity	5.885 - 31.13%	4.4168

Disruptive Bacteria for Thyroid Axis

Research shows links to higher levels of these bacteria correlating to impaired thyroid function.

Bacteria	Mechanism	Healthy Relative Abundance%	Your Abundance%
<i>Klebsiella</i> spp.	Often elevated in AITD; involved in molecular mimicry and inflammation	≤0.168%	18.7765
<i>Eggerthella lenta</i>	Pro-inflammatory; stimulates Th17 pathways and systemic inflammation	≤0.017%	0.0761
<i>Escherichia coli</i>	Produces LPS; promotes inflammation and disrupts micronutrient absorption	≤0.12%	13.0332
<i>Clostridium</i> spp.	Toxin-producing; triggers inflammation and thyroid dysfunction	≤0.085%	1.7748

Sample ID :
Received :

Studies referenced: (31), (32), (33), (34), (35)

Page 12 - 50

Gut-Metabolism Axis

Good

Beneficial Bacteria for Metabolism Axis

These bacteria have a multifactorial impact on the metabolism, and have been linked to lower fat mass, and higher lean mass

Bacteria	Mechanism	Healthy Relative Abundance%	Your Abundance%
Blautia wexlerae	Regulates lipid metabolism; associated with improved glucose tolerance	0.1062 - 1.83%	0.0631
Roseburia spp.	Produces butyrate; supports insulin sensitivity and energy regulation.	0.124 - 1.55%	1.8385
Faecalibacterium prausnitzii	Produces butyrate; reduces inflammation and supports metabolic homeostasis.	0.188 - 2.62%	5.3671
Akkermansia muciniphila	Improves gut barrier; enhances insulin sensitivity and metabolic balance.	0.0012 - 0.28%	4.3232
Bacteroides thetaiotaomicron	Overgrowth may promote gut inflammation and impair metabolic signalling	0.104 - 1.33%	0.0495
Coprococcus	Overgrowth may disrupt SCFA balance, affecting metabolic regulation.	0.039 - 1.047%	0.8029

Disruptive Bacteria for Metabolism Axis

Studies show the link between these bacteria and weight gain and obesity

Bacteria	Mechanism	Healthy Relative Abundance%	Your Abundance%
Methanobrevibacter smithii	Excess activity may slow transit and promote energy harvest and weight gain	≤0.24%	0.3063
Bacteroidetes	Imbalance may impair bile acid metabolism and promote insulin resistance.	≤1.24%	Not Detected

Sample ID :
Received :

Studies referenced: (06), (07), (08), (09), (10)

Page 13 - 50

Gut-Heart Axis

Good

Beneficial Bacteria for Heart Axis

Studies link optimal levels of these bacteria to cardiometabolic health, through a variety of pathways

Bacteria	Mechanism	Healthy Relative Abundance%	Your Abundance%
<i>Bifidobacterium</i> spp.	Reduces inflammation; supports lipid metabolism and cardiovascular health	0.1239 - 4.497%	1.3900
<i>Bifidobacterium adolescentis</i>	Produces SCFAs; helps regulate cholesterol and reduce vascular inflammation.	0.0022 - 0.35%	0.0490
<i>Bifidobacterium longum</i>	Lowers LDL cholesterol; supports endothelial function and heart health.	0.0134 - 0.76%	0.4700
<i>Akkermansia muciniphila</i>	Strengthens gut barrier; improves lipid profiles and vascular integrity.	0.0012 - 0.28%	4.3232
<i>Faecalibacterium prausnitzii</i>	Produces butyrate; reduces systemic inflammation and supports heart health.	0.188 - 2.62%	5.3671
<i>Roseburia</i> spp.	Butyrate-producing; reduces inflammation and improves lipid metabolism linked to heart health.	0.124 - 1.55%	1.8385

Disruptive Bacteria for Heart Axis

These bacteria cover some of the known pathways of cardiovascular health problems

Bacteria	Mechanism	Healthy Relative Abundance%	Your Abundance%
<i>Clostridium</i> spp.	Some species produce toxins; linked to inflammation and cardiovascular risk.	≤0.085%	1.7748
[<i>Clostridium</i>] <i>hylemonae</i>	Disrupts gut-heart axis via secondary bile acid metabolism, impacting cholesterol.	≤0.006%	Not Detected
[<i>Clostridium</i>] <i>innocuum</i>	Triggers inflammation and impairs endothelial function.	≤0.084%	0.0710
<i>Bacteroidetes</i> spp.	Overgrowth can lead to endotoxin release and chronic low-grade inflammation.	≤0.9%	Not Detected
<i>Proteobacteria</i> spp.	Includes endotoxin-producing species; linked to systemic inflammation and CVD.	≤4.6%	Not Detected

Sample ID :

Received :

Studies referenced: (16), (17), (18), (19), (20)

Page 14 - 50

Gut-Liver Axis

Good

Beneficial Bacteria for Liver Axis

These bacteria have been shown in published research to positively influence pathways linked to liver health

Bacteria	Mechanism	Healthy Relative Abundance%	Your Abundance%
<i>Akkermansia muciniphila</i>	Improves gut barrier and reduces liver inflammation.	0.0012 - 0.28%	4.3232
<i>Faecalibacterium prausnitzii</i>	Produces anti-inflammatory SCFAs like butyrate.	0.188 - 2.62%	5.3671
<i>Roseburia</i> spp.	Enhances SCFA production, supporting liver metabolism.	0.124 - 1.55%	1.8385
<i>Roseburia intestinalis</i>	Butyrate producer; reduces hepatic inflammation and supports liver energy metabolism.	0.054 - 0.69%	0.2305
<i>Roseburia hominis</i>	Enhances gut barrier and reduces hepatic oxidative stress.	0.0314 - 0.13%	0.0102
<i>Roseburia rectibacter</i>	Supports SCFA production linked to liver health.	0.01114 - 0.061%	Not Detected
<i>Bifidobacterium</i> spp.	Improves gut integrity and lowers endotoxin load to the liver.	0.1239 - 4.497%	1.3900
<i>Bifidobacterium adolescentis</i>	Modulates immune response and reduces liver fat accumulation.	0.0022 - 0.35%	0.0490
<i>Bifidobacterium longum</i>	Reduces endotoxemia and liver inflammation.	0.0134 - 0.76%	0.4700

Disruptive Bacteria for Liver Axis

Bacteria that are linked to liver, and related problems in published studies

Bacteria	Mechanism	Healthy Relative Abundance%	Your Abundance%
<i>Escherichia coli</i>	Produces endotoxins and contributes to liver inflammation and gut barrier disruption.	≤0.12%	13.0332
<i>Pseudomonas</i>	Produces endotoxins that may worsen liver inflammation.	≤0.002%	Not Detected
<i>Streptococcus</i> spp.	Increases gut permeability and liver injury risk.	≤0.4%	0.1274
<i>[Ruminococcus] gnavus</i>	Produces inflammatory polysaccharides; contributes to metabolic inflammation and gut-liver axis disruption.	≤0.34%	0.5128
<i>Methanobrevibacter</i>	Alters bile acid metabolism and contributes to NAFLD.	≤0.316%	0.4565

Sample ID :
Received :

Studies referenced: (41), (42), (43), (44), (45)

Page 15 - 50

Gut-Joint Axis

Good

Beneficial Bacteria for Joint Axis

Bacteria that are involved in specific anti inflammatory pathways and joint health

Bacteria	Mechanism	Healthy Relative Abundance%	Your Abundance%
<i>Faecalibacterium prausnitzii</i>	Reduces joint inflammation via anti-inflammatory SCFAs.	0.188 - 2.62%	5.3671
<i>Roseburia</i> spp.	Produces butyrate, which protects against joint inflammation.	0.124 - 1.55%	1.8385
<i>Roseburia intestinalis</i>	Modulates immune response to prevent arthritis progression.	0.054 - 0.69%	0.2305
<i>Roseburia hominis</i>	Maintains gut barrier and reduces systemic inflammation.	0.0314 - 0.13%	0.0102
<i>Roseburia rectibacter</i>	Supports gut-joint homeostasis through SCFA production.	0.01114 - 0.061%	Not Detected
<i>Akkermansia muciniphila</i>	Supports gut barrier and reduces inflammation.	0.0012 - 0.28%	4.3232
<i>Bifidobacterium</i> spp.	Modulates gut-immune axis and helps alleviate systemic inflammation in joints.	0.1239 - 4.497%	1.3900
<i>Bifidobacterium adolescentis</i>	Regulates immune cells and reduces joint inflammation.	0.0022 - 0.35%	0.0490
<i>Bifidobacterium longum</i>	Decreases pro-inflammatory cytokines linked to arthritis.	0.0134 - 0.76%	0.4700

Disruptive Bacteria for Joint Axis

Bacteria with links to joint related problems

Bacteria	Mechanism	Healthy Relative Abundance%	Your Abundance%
<i>Collinsella</i> spp.	Increases gut permeability and joint inflammation.	≤0.779%	0.6197
<i>Collinsella aerofaciens</i>	Promotes pro-inflammatory cytokine release.	≤0.779%	0.6197
<i>Collinsella aerofaciens</i> ATCC 25986	Impairs gut barrier and triggers arthritis-related genes.	≤0.0152%	Not Detected
<i>Eggerthella lenta</i>	Modifies immune signaling and may worsen joint disease.	≤0.017%	0.0761
<i>Escherichia coli</i>	Produces endotoxins that promote systemic and joint inflammation.	≤0.12%	13.0332
<i>Prevotella copri</i>	Linked to rheumatoid arthritis onset and severity.	≤0.0043%	Not Detected
<i>Klebsiella pneumoniae</i>	Triggers immune responses in arthritis and spondylitis.	≤0.011%	Not Detected
<i>Proteus mirabilis</i>	Mimics host proteins; linked to rheumatoid arthritis.	≤0.012%	Not Detected

Sample ID :
Received :

Studies referenced: (46), (47), (48), (49), (50)

Page 16 - 50

Gut-Eye Axis

Good

Beneficial Bacteria for Eye Axis

Published studies show the mechanisms involved in a variety of eye conditions

Bacteria	Mechanism	Healthy Relative Abundance%	Your Abundance%
Bifidobacterium spp.	Supports ocular immunity and tear film stability	0.1239 - 4.497%	1.3900
Faecalibacterium prausnitzii	Anti-inflammatory; protects retina & ocular barriers	0.188 - 2.62%	5.3671
Roseburia spp.	Supports gut-retina axis via SCFA metabolites	0.124 - 1.55%	1.8385
Roseburia intestinalis	Supports retinal barrier via butyrate	0.054 - 0.69%	0.2305
Roseburia hominis	Reduces ocular inflammation via SCFA production	0.0314 - 0.13%	0.0102
Bifidobacterium adolescentis	Regulates ocular immunity and barrier integrity.	0.0022 - 0.35%	0.0490
Bifidobacterium longum	Protects against eye inflammation and oxidative stress.	0.0134 - 0.76%	0.4700

Disruptive Bacteria for Eye Axis

Bacteria that have been shown to influence stressors and inflammation linked to eye health

Bacteria	Mechanism	Healthy Relative Abundance%	Your Abundance%
Escherichia coli	Promote uveitis, AMD, barrier breakdown	≤0.12%	13.0332
Betaproteobacteria Spp.	Found in glaucoma; promotes immune dysregulation	≤0.149%	0.1643
Prevotella spp.	Linked to autoimmune ocular inflammation	≤2.011%	Not Detected
Anaerotruncus spp.	Enriched in AMD—associated with degeneration	≤0.052%	Not Detected
Anaerotruncus colihominis	Worsens retinal health via immune activation.	≤0.052%	Not Detected

Sample ID :
Received :

Studies referenced: (01), (02) , (03) , (04) , (05)

Page 17 - 50

Gut-Hormone Axis

Needs Attention

Beneficial Bacteria for Hormone Axis

Bacteria that have been shown in studies to support hormonal regulation

Bacteria	Mechanism	Healthy Relative Abundance%	Your Abundance%
<i>Faecalibacterium prausnitzii</i>	Produces SCFAs; regulates gut-hormone axis via inflammation control.	0.188 - 2.62%	5.3671
<i>Lactobacillus spp.</i>	Supports estrogen metabolism and hormonal balance.	0.0004 - 0.0107%	Not Detected
<i>Lactobacillus delbrueckii</i>	Ferments lactose; may influence hormonal signalling pathways.	0.0004 - 0.0098%	Not Detected
<i>Ligilactobacillus ruminis</i>	Modulates gut immunity; may affect endocrine functions.	0.0012 - 0.0063%	Not Detected
<i>Bacteroides spp.</i>	Involved in bile acid metabolism and hormone signalling.	5.885 - 31.13%	4.4168

Disruptive Bacteria for Hormone Axis

Studies show this bacteria may negative effect hormonal circulation

Bacteria	Mechanism	Healthy Relative Abundance%	Your Abundance%
<i>Clostridium spp.</i>	Produces beta-glucuronidase, may re-circulate estrogens	≤0.085%	1.7748
<i>Escherichia coli</i>	Produces beta-glucuronidase; may re-circulate estrogens and promote inflammation	≤0.12%	13.0332
<i>Betaproteobacteria Spp.</i>	Linked to hormonal imbalance via gut inflammation and dysbiosis	≤0.149%	0.1643

Sample ID :
Received :

Studies referenced: (36), (37), (38), (39), (40)

Page 18 - 50

Gut-Brain Axis

Good

Beneficial Bacteria for Brain Axis

These bacteria are associated with healthy mood regulation, reduced inflammation, and cognitive support.

Bacteria	Mechanism	Healthy Relative Abundance%	Your Abundance%
<i>Faecalibacterium prausnitzii</i>	Anti-inflammatory; promotes gut health.	0.188 - 2.62%	5.3671
<i>Bifidobacterium</i> spp.	Supports digestion; balances gut microbiota.	0.1239 - 4.497%	1.3900
<i>Bifidobacterium adolescentis</i>	Aids in fermentation of dietary fiber; supports immune health.	0.0022 - 0.35%	0.0490
<i>Bifidobacterium longum</i>	Reduces inflammation; supports brain and gut health.	0.0134 - 0.76%	0.4700
<i>Roseburia</i> spp.	Produces butyrate; promotes colon health.	0.124 - 1.55%	1.8385
<i>Roseburia intestinalis</i>	Butyrate producer; improves glucose metabolism & lowers inflammation.	0.054 - 0.69%	0.2305
<i>Roseburia hominis</i>	Butyrate producer; supports metabolic balance & reduces insulin resistance.	0.0314 - 0.13%	0.0102
<i>Roseburia rectibacter</i>	Butyrate producer; improves metabolism & glucose regulation.	0.01114 - 0.061%	Not Detected
<i>Lactobacillus</i> spp.	Produces lactic acid; maintains gut pH & immune function.	0.0004 - 0.0107%	Not Detected
<i>Lactobacillus crispatus</i>	Maintains vaginal & gut health; inhibits pathogens.	0.0004 - 0.0023%	Not Detected

Disruptive Bacteria for Brain Axis

These microbes are associated in research with neuroinflammation, anxiety, or impaired gut-brain signaling when overabundant.

Bacteria	Mechanism	Healthy Relative Abundance%	Your Abundance%
<i>Gammaproteobacteria</i> spp.	Includes endotoxin-producing species; linked to neuroinflammation.	≤4.6%	32.0398
<i>Escherichia coli</i>	Produces endotoxins; may affect gut-brain signaling and inflammation.	≤0.12%	13.0332
<i>Clostridium</i> spp.	Some species are harmful; linked to toxin production.	≤0.085%	1.7748
[<i>Clostridium</i>] <i>hylemoniae</i>	May produce harmful secondary bile acids.	≤0.006%	Not Detected
[<i>Clostridium</i>] <i>innocuum</i>	Opportunistic; can contribute to infection.	≤0.084%	0.0710
[<i>Clostridium</i>] <i>asparagiforme</i>	Potentially linked to metabolic disruption.	≤0.036%	Not Detected
<i>Enterobacter</i> spp.	Opportunistic pathogens; linked to inflammation.	0.00000%	0.1679

Sample ID :
Received :

Studies referenced: (11), (12), (13), (14), (15)

Page 19 - 50

Gut-Lung Axis

Suboptimal

Beneficial Bacteria for Lung Health

These bacteria are associated with reduced respiratory inflammation, immune modulation, and lung barrier support.

Bacteria	Mechanism	Healthy Relative Abundance%	Your Abundance%
<i>Faecalibacterium prausnitzii</i>	Anti-inflammatory; improves lung immunity via gut signaling	0.188 - 2.62%	5.3671
<i>Rothia</i> spp.	Helps maintain mucosal barrier; contributes to immune balance	0.0009 - 0.0093%	Not Detected
<i>Rothia mucilaginosa</i>	Involved in oral-lung microbial defense; modulates immune response	0.0007 - 0.0023%	Not Detected
<i>Veillonella</i> spp.	Converts lactate to SCFAs; supports lung immunity	0.0052 - 0.095%	Not Detected
<i>Roseburia</i> spp.	Produces butyrate; reduces inflammation in lungs and gut	0.124 - 1.55%	1.8385
<i>Roseburia intestinalis</i>	Butyrate production; supports lung-gut barrier and anti-inflammatory response	0.054 - 0.69%	0.2305
<i>Roseburia hominis</i>	Improves immune tolerance; reduces allergic inflammation	0.0314 - 0.13%	0.0102
<i>Roseburia rectibacter</i>	Butyrate producer; enhances respiratory mucosal defense	0.01114 - 0.061%	Not Detected
<i>Lachnospira</i> spp.	SCFA producer; reduces airway inflammation	0.022 - 0.92%	0.1110

Disruptive Bacteria for Lung Health

These microbes are associated with pro-inflammatory responses, increased susceptibility to respiratory conditions, or impaired gut-lung axis signaling.

Bacteria	Mechanism	Healthy Relative Abundance%	Your Abundance%
<i>Escherichia coli</i>	Can trigger lung inflammation via endotoxins	≤0.12%	13.0332
<i>Haemophilus</i> spp.	Respiratory pathogen; may worsen lung conditions like asthma	≤0.075%	0.0183
<i>Aspergillus</i> spp.	Fungal pathogen; linked to lung infections and allergy	≤0.01%	Not Detected
<i>Penicillium</i> spp.	Airborne mold; may cause respiratory irritation or allergic reactions	≤0.0007%	Not Detected
<i>Prevotella</i> spp.	Overgrowth linked to chronic lung inflammation and immune dysregulation	≤2.011%	Not Detected

Sample ID :
Received :

Studies referenced: (26), (27), (28), (29), (30)

Page 20 - 50

Gut Interaction Insights Dashboard

Based on the unique balance of bacteria in your gut, we've identified 20 key health insights that may be relevant to your overall well-being. These insights are drawn from the latest clinical research, and reflect how specific microbes in your microbiome are linked to various aspects of health.

The 'Average Person' label on the graph reflects exactly that - the average person's result for the specific health insight. This data is derived from over 150,000 other gut microbiome samples.

Important - the Average Person isn't necessarily the health goal, but rather a point of reference. The colour coding of the graphs shows the optimal and suboptimal ranges.

As well as the graphical representation, this section of the reports also includes a detailed bacterial breakdown, explaining the mechanisms of specific bacteria for each health insight.

ARA % = Average Relevant Abundance. This is derived from our reference bioinformatics base of 150,000+ gut microbiome samples.

HRA % = Healthy Relative Abundance. This is derived by referencing the available published literature.

Your Abundance % = The abundance of specific bacteria found from analysis of the stool sample submitted for testing.

Sample ID :

Received :

SCFA Producers

Suboptimal

Bacteria	Mechanism	HRA %	ARA %	Your Abundance %
<i>Faecalibacterium prausnitzii</i>	Major butyrate producer	0.188 - 2.62%	~1.084%	5.3671
<i>Roseburia</i> spp.	Produces butyrate; supports gut inflammation reduction	0.124 - 1.55%	~0.611%	1.8385
<i>Anaerobutyricum hallii</i>	Butyrate & propionate producer	0.03 - 0.74%	~0.172%	Not Detected
<i>Eubacterium rectale</i>	Major butyrate producer; supports colon health	0.0173 - 1.2%	~0.0894%	Not Detected
<i>Butyricoccus</i> spp.	Produces butyrate; supports gut barrier	0.0006 - 0.0034%	~0.0013%	0.1551
<i>Anaerostipes</i> spp.	Ferments lactate to butyrate	0.056 - 0.96%	~0.313%	0.8668
<i>Ruminococcus bromii</i>	Starch degrader supporting butyrate	0.0089 - 0.59%	~0.0345%	Not Detected
<i>Akkermansia muciniphila</i>	Acetate producer, mucin specialist	0.0012 - 0.28%	~0.0084%	4.3232
<i>Bifidobacterium</i> spp.	Cross-feeder; supports butyrate synthesis from acetate/lactate	0.1239 - 4.497%	~1.006%	1.3900
<i>Veillonella</i> spp.	Converts lactate to propionate; helps butyrate-producers indirectly	0.0052 - 0.095%	~0.02%	Not Detected
<i>Rothia</i> spp.	Acetate producer; supports mucosal health & SCFA producers	0.0009 - 0.0093%	~0.0027%	Not Detected
<i>Lactobacillales</i> spp.	Lactate producer; supports butyrate-producing bacteria	0.076 - 0.85%	~0.246%	0.2040

Sample ID :
Received :

Studies referenced: (106), (107), (108), (109), (110), (111),
(112), (113)

Inflammation Index

Good

Anti Inflammatory Bacteria	Mechanism	HRA %	ARA %	Your Abundance %
<i>Faecalibacterium prausnitzii</i>	Major butyrate producer; reduces inflammation	0.188 - 2.62%	~1.084%	5.3671
<i>Roseburia</i> spp.	Produces butyrate; anti-inflammatory	0.124 - 1.55%	~0.611%	1.8385
<i>Roseburia intestinalis</i>	Butyrate-producing; supports anti-inflammatory pathways	0.054 - 0.69%	~0.23%	0.2305
<i>Roseburia hominis</i>	Improves immune balance; reduces gut inflammation	0.0314 - 0.13%	~0.364%	0.0102
<i>Lachnospira eligens</i>	SCFA producer; supports mucosal and immune health	0.0222 - 0.92%	~0.186%	0.1110
<i>Bacteroides thetaiotaomicron</i>	Maintains mucosal health; involved in SCFA production	0.104 - 1.33%	~0.47%	0.0495
<i>Akkermansia muciniphila</i>	Supports gut barrier & immune modulation	0.0012 - 0.28%	~0.0084%	4.3232
<i>Bifidobacterium</i> spp.	Immune-modulating acetate producers	0.1239 - 4.497%	~1.006%	1.3900
<i>Lactobacillales</i> spp.	Immune modulating and antimicrobial	0.076 - 0.85%	~0.246%	0.2040
<i>Anaerobutyricum hallii</i>	Cross-feeding, anti-inflammatory	0.03 - 0.74%	~0.172%	Not Detected
Pro Inflammatory Bacteria	Mechanism	HRA %	ARA %	Your Abundance %
<i>Escherichia coli</i>	Produces endotoxins; promotes inflammation	≤0.12%	~0.019%	13.0332
<i>Enterobacteriaceae</i> spp.	Includes pro-inflammatory species; linked to gut dysbiosis	≤3.903%	~0.603%	32.0186
<i>Klebsiella</i> spp.	Triggers immune response; linked to inflammation and autoimmunity	≤0.168%	~0.019%	18.7765
<i>Shigella</i> spp.	Pathogenic; causes intestinal inflammation and damage	≤0.0021%	~0.0008%	Not Detected
<i>Clostridioides difficile</i>	Toxin-producing and inflammatory	≤0.047%	~0.023%	Not Detected
<i>Desulfovibrio</i> spp.	Sulfate reducer, pro-inflammatory	≤0.581%	~0.225%	Not Detected
<i>Proteus</i> spp.	Urease activity and inflammatory role	≤0.01%	~0.0009%	Not Detected

Sample ID :
Received :

Studies referenced: (61), (62), (63), (64), (65), (114), (115),
(116), (117), (118)

Immunity

Suboptimal

Positive Bacteria for Immunity	Mechanism	HRA %	ARA %	Your Abundance %
<i>Faecalibacterium prausnitzii</i>	Anti-inflammatory; modulates immune signaling	0.188 - 2.62%	~1.084%	5.3671
<i>Akkermansia muciniphila</i>	Strengthens mucosal barrier; modulates immune response	0.0012 - 0.28%	~0.0084%	4.3232
<i>Lactobacillus</i> spp.	Enhances mucosal immunity and antimicrobial peptide production	0.0004 - 0.0107%	~0.0017%	Not Detected
<i>Lactobacillus delbrueckii</i>	Supports epithelial integrity; involved in adaptive immunity	0.0004 - 0.0098%	~0.0017%	Not Detected
<i>Bifidobacterium</i> spp.	Modulates dendritic cells and T-reg cells; enhances immune tolerance	0.1239 - 4.497%	~1.006%	1.3900
<i>Lachnospira eligens</i>	SCFA production supports anti-inflammatory pathways	0.0222 - 0.92%	~0.186%	0.1110
<i>Bacteroides fragilis</i>	Produces polysaccharide A (PSA); modulates T-cell balance	0.0496 - 0.94%	~0.183%	0.0658
Negative Bacteria for Immunity	Mechanism	HRA %	ARA %	Your Abundance %
<i>Escherichia coli</i>	Can impair mucosal immunity and promote inflammation via endotoxins (LPS)	≤0.12%	~0.019%	13.0332
<i>Enterobacteriaceae</i> spp.	Associated with gut dysbiosis and immune activation	≤3.903%	~0.603%	32.0186
<i>Prevotella</i> spp.	Overgrowth linked to Th17-mediated inflammation and immune imbalance	≤2.011%	~0.162%	Not Detected
<i>Clostridium</i> spp.	Some species produce toxins that impair immune signaling	≤0.085%	~0.035%	1.7748
<i>Clostridioides difficile</i>	Produces toxins A & B; disrupts gut barrier and immune tolerance	≤0.047%	~0.023%	Not Detected

Sample ID :
Received :

Studies referenced: (96), (97), (98), (99), (100)

Page 24 - 50

Histamine Index

Good

Histamine Degrading Bacteria	Mechanism	HRA %	ARA %	Your Abundance %
<i>Bifidobacterium</i> spp.	May support histamine degradation and reduce gut inflammation	0.1239 - 4.497%	~1.006%	1.3900
<i>Bifidobacterium longum</i>	Supports mucosal integrity; linked to histamine degradation pathways	0.0134 - 0.76%	~0.137%	0.4700
<i>Bifidobacterium bifidum</i>	May degrade histamine and modulate immune responses	0.0006 - 0.053%	~0.0032%	0.3612
<i>Lactobacillus</i> spp.	Some strains degrade histamine; others produce it (strain-specific)	0.0004 - 0.0107%	~0.0017%	Not Detected
<i>Lactobacillus plantarum</i>	Known to degrade histamine and regulate DAO (diamine oxidase)	0.000335 - 0.0029%	~0.0016%	Not Detected
<i>Faecalibacterium</i> spp.	Anti-inflammatory; indirectly supports histamine balance	0.675-9.12%	~4.363%	8.6092
<i>Faecalibacterium prausnitzii</i>	Reduces inflammation and strengthens gut barrier; supports histamine regulation	0.188 - 2.62%	~1.084%	5.3671
<i>Akkermansia</i> spp.	Improves gut barrier function; may help reduce histamine response indirectly	0.0012-0.35%	~0.01%	4.3232
<i>Roseburia</i> spp.	Butyrate producer; supports gut lining integrity, helping with histamine modulation	0.124 - 1.55%	~0.611%	1.8385
Histamine Producing Bacteria	Mechanism	HRA %	ARA %	Your Abundance %
<i>Morganella morganii</i>	Converts histidine to histamine via histidine decarboxylase	≤0.0018%	~0.0006%	Not Detected
<i>Klebsiella pneumoniae</i>	Produces histamine through decarboxylation of histidine	≤0.011%	~0.0019%	Not Detected
<i>Proteus mirabilis</i>	Histidine decarboxylase activity; contributes to histamine buildup	≤0.012%	~0.001%	Not Detected
<i>Enterobacter cloacae</i>	Capable of histamine production via histidine decarboxylase	≤0.0036%	~0.0009%	Not Detected
<i>Citrobacter freundii</i>	Known to decarboxylate histidine to histamine	≤0.0037%	~0.0009%	0.0102

Sample ID :
Received :

Studies referenced: (119), (120), (121), (122)

Page 25 - 50

Protein Absorption

Needs Attention

Positive Bacteria for Protein Metabolism	Mechanism	HRA %	ARA %	Your Abundance %
<i>Bacteroides thetaiotaomicron</i>	Breaks down proteins and complex carbohydrates; aids in amino acid utilization	0.104 - 1.33%	~0.47%	0.0495
<i>Bacteroides</i> spp.	Some strains degrade protein and generate ammonia and sulfides	5.885 - 31.13%	~17.051%	4.4168
<i>Coprococcus</i> spp.	Ferments protein-derived substrates into SCFAs	0.039 - 0.25%	~0.1445%	0.8029
<i>Coprococcus eutactus</i>	Involved in amino acid fermentation; SCFA producer	0.0035 - 0.027%	~0.01%	0.4963
<i>Coprococcus catus</i>	Ferments protein and carbohydrates; promotes gut health	0.0116 - 0.156%	~0.049%	0.0814
<i>Coprococcus comes</i>	Produces SCFAs from amino acids; may help regulate gut pH	0.0135 - 0.382%	~0.084%	0.1875
<i>Anaerobutyricum hallii</i>	Ferments amino acids to produce butyrate; protein metabolizer	0.03 - 0.74%	~0.172%	Not Detected
<i>Bacteroides fragilis</i>	Can degrade amino acids; some strains linked to inflammation	0.0496 - 0.94%	~0.183%	0.0658
Negative Bacteria for Protein Metabolism	Mechanism	HRA %	ARA %	Your Abundance %
<i>Klebsiella</i> spp.	Produces putrefactive byproducts; associated with ammonia & toxic amines	≤0.168%	~0.019%	18.7765
<i>Enterobacteriaceae</i> spp.	Ferments proteins to harmful compounds; increases gut pH	≤3.903%	~0.603%	32.0186
<i>Bacteroides caccae</i>	Protein fermentation; may promote mucin degradation	≤1.012%	~0.21%	0.0267
<i>Bacteroides ovatus</i>	Involved in protein metabolism; may release harmful nitrogen byproducts	≤0.37%	~0.143%	0.6966
<i>Clostridium</i> spp.	Putrefaction of protein; produces toxins	≤0.085%	~0.035%	1.7748
<i>Escherichia coli</i>	Produces ammonia and other toxic byproducts	≤0.12%	~0.019%	13.0332

Sample ID :

Received :

 Studies referenced: (133), (134), (135), (136), (137), (138),
 (139), (140), (141), (142)

Carbohydrate Absorption

Good

Positive Bacteria for Carbohydrate Metabolism	Mechanism	HRA %	ARA %	Your Abundance %
Ruminococcus bromii	Breaks down resistant starch	0.0089 - 0.59%	~0.0345%	Not Detected
Bacteroides thetaiotaomicron	Degrades complex polysaccharides; key in carb breakdown	0.104 - 1.33%	~0.47%	0.0495
Roseburia spp.	Ferments carbohydrates to produce SCFAs	0.124 - 1.55%	~0.611%	1.8385
Roseburia intestinalis	Converts carbohydrates into butyrate	0.054 - 0.69%	~0.23%	0.2305
Roseburia hominis	Butyrate producer; ferments dietary fiber	0.0314 - 0.13%	~0.364%	0.0102
Coprococcus spp.	Ferments carbs into SCFAs (especially acetate, butyrate)	0.039 - 0.25%	~0.1445%	0.8029
Coprococcus eutactus	Ferments carbohydrates; SCFA-producing	0.0035 - 0.027%	~0.01%	0.4963
Coprococcus catus	Known to ferment lactate to propionate	0.0116 - 0.156%	~0.049%	0.0814
Coprococcus comes	SCFA producer via carbohydrate metabolism	0.0135 - 0.382%	~0.084%	0.1875
Faecalibacterium prausnitzii	Converts carbs to butyrate; anti-inflammatory	0.188 - 2.62%	~1.084%	5.3671
Anaerobutyricum hallii	Ferments carbs and lactate to butyrate	0.03 - 0.74%	~0.172%	Not Detected
Akkermansia muciniphila	Degrades mucin; involved in mucosal carb metabolism	0.0012 - 0.28%	~0.0084%	4.3232
Negative Bacteria for Carbohydrate Metabolism	Mechanism	HRA %	ARA %	Your Abundance %
Enterobacteriaceae spp.	Ferments simple sugars; linked to dysbiosis when overgrown	≤3.903%	~0.603%	32.0186
Clostridium perfringens	Produces gas and toxins from carb fermentation; associated with gut disruption	≤0.0046%	~0.0015%	Not Detected

 Sample ID :
 Received :

 Studies referenced: (133), (134), (135), (136), (137), (138),
 (139), (140), (141), (142)

Fat Absorption

Good

Positive Bacteria for Fat Metabolism	Mechanism	HRA %	ARA %	Your Abundance %
Bacteroides spp.	Contributes to bile acid metabolism and lipid breakdown	5.885 - 31.13%	~17.051%	4.4168
Bacteroides thetaiotaomicron	Aids digestion of polysaccharides; influences lipid metabolism indirectly	0.104 - 1.33%	~0.47%	0.0495
Akkermansia spp.	Enhances gut barrier; modulates fat absorption and lipid metabolism	0.0012-0.35%	~0.01%	4.3232
Akkermansia muciniphila	Supports mucin layer; improves metabolic health including fat processing	0.0012 - 0.28%	~0.0084%	4.3232
Roseburia spp.	Produces SCFAs that may influence lipid metabolism	0.124 - 1.55%	~0.611%	1.8385
Roseburia intestinalis	Butyrate producer; modulates fat absorption and gut barrier	0.054 - 0.69%	~0.23%	0.2305
Bifidobacterium spp.	Enhances bile salt hydrolase activity; may improve fat digestion	0.1239 - 4.497%	~1.006%	1.3900
Bifidobacterium longum	Promotes bile metabolism; may support healthy fat absorption	0.0134 - 0.76%	~0.137%	0.4700
Negative Bacteria for Fat Metabolism	Mechanism	HRA %	ARA %	Your Abundance %
Bilophila wadsworthia	Promotes bile acid imbalance, associated with high-fat diet	≤0.457%	~0.166%	0.1385
Escherichia coli	Can disrupt gut barrier, influence fat metabolism negatively	≤0.12%	~0.019%	13.0332
Klebsiella pneumoniae	May impair lipid digestion; linked to metabolic inflammation	≤0.011%	~0.0019%	Not Detected
Enterococcus faecalis	Associated with gut inflammation; may disrupt bile metabolism	≤0.0049%	~0.001%	Not Detected
Pseudomonas aeruginosa	Linked to gut dysbiosis; may interfere with fat absorption mechanisms	≤0.0007%	~0.0007%	Not Detected

Sample ID :
Received :

Studies referenced: (133), (134), (135), (136), (137), (138),
(139), (140), (141), (142)

Micronutrient Absorption

Needs Attention

	Bacteria	Mechanism	HRA %	ARA %	Your Abundance %
Vitamin B1 (Thiamine)	<i>Bacteroides fragilis</i>	Synthesises thiamine; supports host absorption in colon.	0.0496 - 0.94%	~0.183%	0.0658
Vitamin B2 (Riboflavin)	<i>Lactobacillus</i> spp.	Produces riboflavin; enhances mucosal absorption efficiency.	0.0004 - 0.0107%	~0.0017%	Not Detected
Vitamin B3 (Niacin)	<i>Bacteroides</i> spp.	Converts precursors into niacin for host use.	5.885 - 31.13%	~17.051%	4.4168
Vitamin B5 (Pantothenic acid)	<i>Enterococcus</i> spp.	Synthesises pantothenate in gut lumen.	0.0036 - 0.0347%	~0.009%	0.0427
Vitamin B6 (Pyridoxine)	<i>Bifidobacterium</i> spp.	Contributes to pyridoxine pool for host metabolism.	0.1239 - 4.497%	~1.006%	1.3900
Folic acid	<i>Lactobacillus plantarum</i>	Synthesises folate; promotes enterocyte uptake.	0.000335 - 0.0029%	~0.0016%	Not Detected
Biotin	<i>Bacteroides thetaiotaomicron</i>	Produces biotin; aids epithelial absorption and balance.	0.104 - 1.33%	~0.47%	0.0495
Vitamin K	<i>Bacteroides</i> spp.	Produces menaquinones (K2) for host absorption.	5.885 - 31.13%	~17.051%	4.4168
Vitamin B12 (Cobalamin)	<i>Propionibacterium</i> spp.	Synthesises B12 analogues aiding microbiota balance.	0.0004 - 0.002%	~0.0009%	Not Detected
Magnesium	<i>Lactobacillus</i> spp.	May support magnesium solubility via pH modulation and gut health.	0.0004 - 0.0107%	~0.0017%	Not Detected
Calcium	<i>Bifidobacterium</i> spp.	Improves calcium uptake via SCFA production.	0.1239 - 4.497%	~1.006%	1.3900
Iron	<i>Bacteroides thetaiotaomicron</i>	Influences iron metabolism through microbial metabolites.	0.104 - 1.33%	~0.47%	0.0495
Zinc	<i>Lactobacillus plantarum</i>	Binds zinc; improves mucosal uptake and stability.	0.000335 - 0.0029%	~0.0016%	Not Detected

Sample ID :
Received :

Studies referenced: (123), (124), (125), (126), (127), (128), (129), (130), (131), (132)

Bowel Habits

Good

Positive Bacteria for Bowel Habits	Mechanism	HRA %	ARA %	Your Abundance %
<i>Faecalibacterium prausnitzii</i>	SCFA (especially butyrate) producer; supports gut motility and anti-inflammatory effect	0.188 - 2.62%	~1.084%	5.3671
<i>Roseburia</i> spp.	SCFA producer, especially butyrate; improves bowel movement	0.124 - 1.55%	~0.611%	1.8385
<i>Roseburia intestinalis</i>	SCFA producer, especially butyrate; improves bowel movement	0.054 - 0.69%	~0.23%	0.2305
<i>Roseburia hominis</i>	SCFA producer, especially butyrate; improves bowel movement	0.0314 - 0.13%	~0.364%	0.0102
<i>Bifidobacterium</i> spp.	Enhances gut transit and stool formation	0.1239 - 4.497%	~1.006%	1.3900
<i>Bifidobacterium adolescentis</i>	Involved in carbohydrate fermentation; mild support for motility	0.0022 - 0.35%	~0.018%	0.0490
<i>Bifidobacterium longum</i>	Documented to support regularity and improve stool quality	0.0134 - 0.76%	~0.137%	0.4700
Negative Bacteria for Bowel Habits	Mechanism	HRA %	ARA %	Your Abundance %
<i>Methanobrevibacter smithii</i>	Slows gut transit via methane production, leading to constipation	≤0.24%	~0.017%	0.3063
<i>Enterobacteriaceae</i> spp.	May increase gas, bloating, and gut dysbiosis	≤3.903%	~0.603%	32.0186
<i>Methanobrevibacter</i> spp.	Methane production linked to sluggish bowel motility	≤0.316%	~0.009%	0.4565
<i>Clostridioides difficile</i>	Toxin-producing; causes diarrhea and gut inflammation	≤0.047%	~0.023%	Not Detected
<i>Escherichia coli</i>	Pathogenic strains may cause diarrhea or constipation via inflammation	≤0.12%	~0.019%	13.0332

Sample ID :
Received :

Studies referenced: (66), (67), (68), (69), (70), (71), (72), (73), (74), (75)

Fitness

Good

Positive Bacteria for Athletic Performance & Fitness	Mechanism	HRA %	ARA %	Your Abundance %
<i>Coprococcus eutactus</i>	SCFA producer; supports mood, endurance, and recovery	0.0035 - 0.027%	~0.01%	0.4963
<i>Bifidobacterium longum</i>	Reduces gut inflammation and supports immune recovery post-exercise	0.0134 - 0.76%	~0.137%	0.4700
<i>Roseburia spp.</i>	Butyrate producer; supports gut health and muscle recovery	0.124 - 1.55%	~0.611%	1.8385
<i>Roseburia intestinalis</i>	Produces butyrate; linked to anti-inflammatory benefits post-workout	0.054 - 0.69%	~0.23%	0.2305
<i>Roseburia hominis</i>	Enhances energy metabolism via SCFA production	0.0314 - 0.13%	~0.364%	0.0102
<i>Faecalibacterium prausnitzii</i>	Anti-inflammatory SCFA producer; promotes post-exercise recovery	0.188 - 2.62%	~1.084%	5.3671
<i>Coprococcus spp.</i>	Some strains may shift to pro-inflammatory behavior in dysbiosis	0.039 - 0.25%	~0.1445%	0.8029
<i>Lachnospiraceae spp.</i>	Certain strains may promote inflammation when dominant	3.641 - 17.77%	~9.25%	8.7359
<i>Veillonella spp.</i>	While helpful in some exercise contexts, overgrowth may contribute to inflammation	0.0052 - 0.095%	~0.02%	Not Detected
Negative Bacteria for Athletic Performance & Fitness	Mechanism	HRA %	ARA %	Your Abundance %
<i>Clostridium spp.</i>	Can produce endotoxins and contribute to post-exercise inflammation	≤0.085%	~0.035%	1.7748
<i>Escherichia spp.</i>	Linked to gut permeability and inflammation under stress	≤0.161%	~0.025%	13.0332
<i>Shigella spp.</i>	Pathogenic; triggers inflammation and impairs gut function	≤0.0021%	~0.0008%	Not Detected

Sample ID :
Received :

Studies referenced: (101), (102), (103), (104), (105)

Page 31 - 50

Mood & Mental Health

Suboptimal

Positive Bacteria for Mood / Mental Health	Mechanism	HRA %	ARA %	Your Abundance %
<i>Bifidobacterium adolescentis</i>	Produces GABA and supports serotonin pathways	0.0022 - 0.35%	~0.018%	0.0490
<i>Lactobacillus rhamnosus</i>	Modulates GABA receptors; reduces anxiety-like behavior	0.0052 - 0.14%	~0.024%	Not Detected
<i>Faecalibacterium prausnitzii</i>	Anti-inflammatory; linked to improved emotional well-being	0.188 - 2.62%	~1.084%	5.3671
<i>Bifidobacterium longum</i>	Reduces stress hormones; supports gut-brain axis balance	0.0134 - 0.76%	~0.137%	0.4700
Negative Bacteria for Mood / Mental Health	Mechanism	HRA %	ARA %	Your Abundance %
<i>Escherichia coli</i>	Produces lipopolysaccharides (LPS); associated with anxiety and stress	≤0.12%	~0.019%	13.0332
<i>Enterobacteriaceae</i> spp.	Triggers neuroinflammation and gut-brain axis disruption	≤3.903%	~0.603%	32.0186
<i>Clostridium</i> spp.	Produces neurotoxins; may impair mood and cognition	≤0.085%	~0.035%	1.7748
<i>Streptococcus</i> spp.	Linked to brain fog and anxiety in excess	≤0.4%	~0.1323%	0.1274

Autoimmunity

Good

Positive Bacteria for Autoimmunity	Mechanism	HRA %	ARA %	Your Abundance %
<i>Faecalibacterium prausnitzii</i>	Produces anti-inflammatory butyrate and reduces cytokine levels	0.188 - 2.62%	~1.084%	5.3671
<i>Akkermansia muciniphila</i>	Supports mucosal immunity and reduces gut inflammation	0.0012 - 0.28%	~0.0084%	4.3232
<i>Bacteroides fragilis</i>	Modulates immune response; balances T-reg cells	0.0496 - 0.94%	~0.183%	0.0658
Negative Bacteria for Autoimmunity	Mechanism	HRA %	ARA %	Your Abundance %
<i>Betaproteobacteria</i> spp.	Associated with immune activation and gut inflammation	0.00000%	0.00000%	0.1643
<i>Prevotella</i> spp.	Linked to pro-inflammatory responses and autoimmunity	≤2.011%	~0.162%	Not Detected
<i>Bilophila wadsworthia</i>	Produces sulfides, linked to IBD	≤0.457%	~0.166%	0.1385
<i>Klebsiella pneumoniae</i>	Associated with inflammatory autoimmune conditions	≤0.011%	~0.0019%	Not Detected

Sample ID :
Received :

Studies referenced: (143), (144), (145), (146), (147)

Page 32 - 50

Detoxification

Suboptimal

Positive Bacteria for Detoxification	Mechanism	HRA %	ARA %	Your Abundance %
<i>Akkermansia muciniphila</i>	Strengthens gut barrier and supports mucosal detoxification	0.0012 - 0.28%	~0.0084%	4.3232
<i>Faecalibacterium prausnitzii</i>	Reduces inflammation and assists in butyrate-supported detoxification	0.188 - 2.62%	~1.084%	5.3671
<i>Bacteroides thetaiotaomicron</i>	Breaks down dietary toxins and metabolizes xenobiotics	0.104 - 1.33%	~0.47%	0.0495
Negative Bacteria for Detoxification	Mechanism	HRA %	ARA %	Your Abundance %
<i>Alphaproteobacteria</i> spp.	Can interfere with drug metabolism and modulate host liver enzymes	≤0.003%	~0.001%	0.3542
<i>Staphylococcus</i> spp.	Associated with bioactivation of toxins and xenobiotics	≤0.0017%	~0.0011%	Not Detected
<i>Escherichia coli</i>	Can produce β-glucuronidase that reactivates detoxified compounds	≤0.12%	~0.019%	13.0332

Stress Resilience

Good

Positive Bacteria for Stress Resilience	Mechanism	HRA %	ARA %	Your Abundance %
<i>Lactobacillus</i> spp.	Produces GABA and modulates stress-induced cortisol levels	0.0004 - 0.0107%	~0.0017%	Not Detected
<i>Lactobacillus delbrueckii</i>	Supports gut-brain axis via anti-inflammatory signaling	0.0004 - 0.0098%	~0.0017%	Not Detected
<i>Lactobacillus crispatus</i>	Helps regulate mood and dampen stress-related inflammation	0.0004 - 0.0023%	~0.0009%	Not Detected
<i>Bifidobacterium</i> spp.	Supports HPA axis balance and reduces stress hormone responses	0.1239 - 4.497%	~1.006%	1.3900
<i>Bifidobacterium adolescentis</i>	Reduces anxiety-like behavior and modulates neuroinflammation	0.0022 - 0.35%	~0.018%	0.0490
<i>Bifidobacterium longum</i>	Modulates stress-induced cortisol and supports emotional regulation	0.0134 - 0.76%	~0.137%	0.4700
<i>Roseburia</i> spp.	Produces butyrate, promoting calmness via vagus nerve signaling	0.124 - 1.55%	~0.611%	1.8385
<i>Roseburia intestinalis</i>	Helps reduce systemic stress markers and supports resilience	0.054 - 0.69%	~0.23%	0.2305
<i>Roseburia hominis</i>	Linked to reduced stress reactivity and mood stability	0.0314 - 0.13%	~0.364%	0.0102

Sample ID :

Received :

Studies referenced: (148) , (149) , (150) , (151) , (152),
Studies referenced: (81) , (82) , (83) , (84) , (85)

Longevity

Good

Positive Bacteria for Longevity	Mechanism	HRA %	ARA %	Your Abundance %
<i>Akkermansia</i> spp.	Promotes metabolic health and gut barrier integrity, supporting longevity	0.0012-0.35%	~0.01%	4.3232
<i>Akkermansia muciniphila</i>	Improves gut lining, reduces inflammation, and supports healthy aging	0.0012 - 0.28%	~0.0084%	4.3232
<i>Faecalibacterium</i> spp.	Produces anti-inflammatory butyrate, linked to reduced age-related diseases	0.675-9.12%	~4.363%	8.6092
<i>Faecalibacterium prausnitzii</i>	Anti-inflammatory species associated with longevity and healthy aging	0.188 - 2.62%	~1.084%	5.3671
<i>Bifidobacterium</i> spp.	Maintains gut microbiota diversity and immune regulation with age	0.1239 - 4.497%	~1.006%	1.3900
<i>Bifidobacterium longum</i>	Linked to healthy aging through immune modulation and SCFA production	0.0134 - 0.76%	~0.137%	0.4700
<i>Bifidobacterium adolescentis</i>	Supports intestinal health and anti-aging immune response	0.0022 - 0.35%	~0.018%	0.0490
<i>Roseburia</i> spp.	Produces butyrate, reduces inflammation, supports metabolic aging	0.124 - 1.55%	~0.611%	1.8385
<i>Roseburia hominis</i>	Associated with gut homeostasis and metabolic resilience in aging	0.0314 - 0.13%	~0.364%	0.0102
<i>Roseburia intestinalis</i>	Linked to anti-inflammatory functions and improved aging markers	0.054 - 0.69%	~0.23%	0.2305
<i>Roseburia rectibacter</i>	Contributes to butyrate production, maintaining healthy gut with age	0.01114 - 0.061%	~0.03%	Not Detected

Sample ID :
Received :

Studies referenced: (153) , (154) , (155) , (156) , (157)

Page 34 - 50

Insulin Balance

Needs Attention

Positive Bacteria Insulin Balance	Mechanism	HRA %	ARA %	Your Abundance %
<i>Akkermansia muciniphila</i>	Improves insulin sensitivity and reduces systemic inflammation	0.0012 - 0.28%	~0.0084%	4.3232
<i>Eubacterium rectale</i>	Produces butyrate, supports glucose metabolism and insulin signaling	0.0173 - 1.2%	~0.0894%	Not Detected
<i>Coprococcus</i> spp.	Associated with improved glycemic control and SCFA production	0.039 - 0.25%	~0.1445%	0.8029
<i>Lactobacillus</i> spp.	Modulates gut barrier and improves glucose homeostasis	0.0004 - 0.0107%	~0.0017%	Not Detected
<i>Lactobacillus delbrueckii</i>	Supports insulin sensitivity via anti-inflammatory action	0.0004 - 0.0098%	~0.0017%	Not Detected
<i>Lactobacillus crispatus</i>	Linked to metabolic benefits including improved insulin response	0.0004 - 0.0023%	~0.0009%	Not Detected
Negative Bacteria for Insulin Balance	Mechanism	HRA %	ARA %	Your Abundance %
[<i>Ruminococcus</i>] <i>gnavus</i>	Associated with increased inflammation and insulin resistance	≤0.34%	~0.088%	0.5128
<i>Flavonifractor</i>	Linked to higher insulin levels and disrupted glucose metabolism	≤0.301%	~0.12%	Not Detected
<i>Escherichia coli</i>	Contributes to endotoxin production and impaired insulin signaling	≤0.12%	~0.019%	13.0332

Bloating / Gas

Good

Positive Bacteria Bloating / Gas	Mechanism	HRA %	ARA %	Your Abundance %
<i>Lactobacillus</i> spp.	Ferments carbohydrates into lactic acid, limiting gas buildup	0.0004 - 0.0107%	~0.0017%	Not Detected
<i>Enterococcus faecium</i>	Assists in fermentation and limits pathogenic overgrowth	0.0013 - 0.0094%	~0.0035%	0.0427
<i>Bifidobacterium</i> spp.	Converts fibers to SCFAs; reduces gas and maintains gut balance	0.1239 - 4.497%	~1.006%	1.3900
<i>Bifidobacterium breve</i>	Supports balanced fermentation and reduces bloating	≤0.013%	~0.0026%	0.0391
Negative Bacteria Bloating / Gas	Mechanism	HRA %	ARA %	Your Abundance %
<i>Bilophila wadsworthia</i>	Produces sulfides, linked to bloating	≤0.457%	~0.166%	0.1385
<i>Clostridium</i> spp.	Produces gas and toxins from proteins	≤0.085%	~0.035%	1.7748
<i>Clostridium perfringens</i>	Gas-producing gut pathogen	≤0.0046%	~0.0015%	Not Detected
<i>Methanobrevibacter smithii</i>	Creates methane, slows gut motility	≤0.24%	~0.017%	0.3063
<i>Desulfovibrio</i> spp.	Releases hydrogen sulfide gas	≤0.581%	~0.225%	Not Detected

Sample ID :
Received :

Studies referenced: (51), (52), (53), (54), (55)

Page 35 - 50

ADHD

Good

Positive Bacteria for ADHD	Mechanism	HRA %	ARA %	Your Abundance %
<i>Faecalibacterium prausnitzii</i>	Reduces gut inflammation; supports brain health	0.188 - 2.62%	~1.084%	5.3671
<i>Veillonellaceae</i> spp.	Linked to improved focus and energy metabolism	0.012 - 0.559%	~0.066%	0.1545
<i>Veillonella</i>	Converts lactate to propionate; may aid cognitive performance	0.0052 - 0.095%	~0.02%	Not Detected
<i>Bifidobacterium</i> spp.	Supports neurotransmitter balance and brain development	0.1239 - 4.497%	~1.006%	1.3900
<i>Bifidobacterium adolescentis</i>	Involved in dopamine modulation; reduces ADHD symptoms	0.0022 - 0.35%	~0.018%	0.0490
<i>Bifidobacterium longum</i>	Promotes mental well-being and stress resilience	0.0134 - 0.76%	~0.137%	0.4700
Negative Bacteria for ADHD	Mechanism	HRA %	ARA %	Your Abundance %
<i>Enterobacteriaceae</i> spp.	Linked to neuroinflammation and mood imbalance	≤3.903%	~0.603%	32.0186
<i>Prevotella</i> spp.	Associated with cognitive and behavioral issues	≤2.011%	~0.162%	Not Detected
<i>Eggerthella</i> spp.	Linked to neuroactive compound production	≤0.0825%	~0.02%	0.0761
<i>Eggerthellaceae</i>	Potential disruptor of gut-brain signaling	≤0.309%	~0.07%	0.1117
<i>Eggerthella lenta</i>	Associated with increased neurotoxin risk	≤0.017%	~0.011%	0.0761

Sample ID :
Received :

Studies referenced: (51) , (52) , (53) , (54) , (55)

Page 36 - 50

ASD

Suboptimal

Positive Bacteria for ASD	Mechanism	HRA %	ARA %	Your Abundance %
<i>Bifidobacterium</i> spp.	Improves gut-brain signaling and reduces inflammation	0.1239 - 4.497%	~1.006%	1.3900
<i>Bifidobacterium adolescentis</i>	Supports dopamine regulation and neurodevelopment	0.0022 - 0.35%	~0.018%	0.0490
<i>Bifidobacterium longum</i>	Enhances gut barrier and emotional balance	0.0134 - 0.76%	~0.137%	0.4700
<i>Lactobacillus</i> spp	Modulates GABA and serotonin; calms nervous system	0.0003 - 0.0008%	~0.0004%	Not Detected
<i>Lactobacillus delbrueckii</i>	Helps reduce oxidative stress in ASD	0.0004 - 0.0098%	~0.0017%	Not Detected
<i>Lactobacillus crispatus</i>	Supports microbiota balance and anti-inflammatory tone	0.0004 - 0.0023%	~0.0009%	Not Detected
<i>Dorea</i> spp.	Contributes to gut health and neuroactive compound production	0.0615 - 0.881%	~0.258%	0.1220
<i>Dorea formicigenerans</i>	Linked with better stool consistency in ASD	0.016 - 0.227%	~0.069%	Not Detected
<i>Faecalibacterium prausnitzii</i>	Anti-inflammatory; supports cognitive function	0.188 - 2.62%	~1.084%	5.3671
Negative Bacteria for ASD	Mechanism	HRA %	ARA %	Your Abundance %
<i>Clostridium</i> spp.	Produces neurotoxins and disrupts behavior	≤0.085%	~0.035%	1.7748
<i>Peptostreptococcaceae</i> spp.	Linked to gut inflammation in ASD	≤0.084%	~0.04%	0.0561
<i>Clostridia</i> spp.	Associated with higher neuroactive toxin load	≤34.08%	~19.97%	28.4569
<i>Bacilli</i> spp.	Imbalance may contribute to GI symptoms in ASD	≤0.27%	~0.17%	0.2040
<i>Gammaproteobacteria</i>	Linked to immune dysregulation and gut issues	≤4.604%	~0.814%	32.0398

Sample ID :
Received :

Studies referenced: (56) , (57) , (58) , (59) , (60) , Studies
referenced: (86) , (87) , (88) , (89) , (90)

Sleep

Good

Positive Bacteria for Sleep	Mechanism	HRA %	ARA %	Your Abundance %
Lachnospiraceae spp.	Supports SCFA production and circadian regulation	3.641 - 17.77%	~9.25%	<div style="width: 8.7359%;">8.7359</div>
Faecalibacterium prausnitzii	Anti-inflammatory; helps regulate melatonin pathway	0.188 - 2.62%	~1.084%	<div style="width: 5.3671%;">5.3671</div>
Bifidobacterium spp.	Modulates tryptophan metabolism for serotonin synthesis	0.1239 - 4.497%	~1.006%	<div style="width: 1.3900%;">1.3900</div>
Bifidobacterium adolescentis	Enhances serotonin and GABA balance	0.0022 - 0.35%	~0.018%	<div style="width: 0.0490%;">0.0490</div>
Bifidobacterium longum	Supports calm mood and healthy sleep cycles	0.0134 - 0.76%	~0.137%	<div style="width: 0.4700%;">0.4700</div>
Lactiplantibacillus spp.	Contributes to GABA production and sleep onset	0.0004 - 0.0033%	~0.0008%	<div style="width: 0%;">Not Detected</div>
Negative Bacteria for Sleep	Mechanism	HRA %	ARA %	Your Abundance %
Desulfovibrio spp.	Produces hydrogen sulfide; linked to poor sleep quality	≤0.581%	~0.225%	<div style="width: 0%;">Not Detected</div>
Selenomonadales spp.	Associated with gut imbalance and circadian disruption	≤0.17%	~0.003%	<div style="width: 0.4207%;">0.4207</div>
Negativicutes spp.	Linked to inflammation and neurotransmitter imbalance	≤2.24%	~0.921%	<div style="width: 1.0528%;">1.0528</div>
Enterobacteriaceae spp.	May affect serotonin balance and sleep latency	≤3.903%	~0.603%	<div style="width: 32.0186%;">32.0186</div>
[Ruminococcus] torques	Linked with gut permeability and disturbed sleep	≤0.38%	~0.099%	<div style="width: 0.2291%;">0.2291</div>

Sample ID :
Received :

Studies referenced: (56) , (57) , (58) , (59) , (60) , Studies
referenced: (86) , (87) , (88) , (89) , (90)

EverWell Labs

Module 3

Unique Gut Based Nutrition Plan

Food & Nutrient Analysis

This module of the report details the food and nutrient suggestions that can be implemented to help naturally rebalance the gut microbiome. Nutrients within foods such as probiotics, prebiotics, polyphenols, and micronutrients - can be used to feed certain gut bacteria, and starve others.

The food recommendations are tailored and unique to each stool sample, based on the microbial analysis.

Top 30 Beneficial Foods

Based on the published scientific research, these foods contain the most appropriate nutritional elements to help rebalance the gut microbiome. These are the foods to focus on including in the diet.

Top 30 Detrimental Foods

These are the most prominent foods that have qualities that could further exacerbate microbial imbalances in the gut, based on the available published research. These should be reduced or removed from the diet.

Please bear in mind - this food recommendation module has no bias, other than rebalancing the gut microbiome. There may be foods in the lists that are not of preference, or cannot be consumed for medical reasons.

Foods appearing in the Detrimental Foods does not make them 'bad' foods - only they have qualities that could further imbalance the gut microbiota.

Important

When implemented under the supervision of a suitably qualified health practitioner, these recommended food choices are principles - other foods and drinks can, and should, still be consumed. It is important to consider other factors of health, especially when removing foods, to ensure the diet is still balanced from a macro and micro nutrient point of view.

Any dietary changes should only be made under the supervision of a suitably qualified health practitioner. This test does not diagnose allergies, intolerances, or food sensitivities. The food recommendations are purely principles of foods that feed, or starve, targeted bacteria based on the unique microbial balance in the gut.

Top 30 Beneficial Foods

Based on the published scientific research, these foods contain the most appropriate nutritional elements to help rebalance the gut microbiome. These are the foods to focus on including in the diet.

Priority to include in diet

Lentils

Bananas

Barley

Asparagus

Black beans

Apples

Chicory root

Leeks

Oats

Beneficial

Garlic

Kale

Flaxseeds

Miso

Quinoa

Pomegranate

Jerusalem artichokes

Broccoli

Zucchini

Fermented garlic

Blueberries

Tempeh

Okra

Almonds

Lettuce

Fermented beets

Cottage cheese

Cucumbers

Sauerkraut

Pickles

Pickled beets

Sample ID :

Received :

Top 30 Detimental Foods

These are the most prominent foods that have qualities that could further exacerbate microbial imbalances in the gut, based on the available published research. These should be reduced or removed from the diet.

Priority to remove, or reduce from diet

Bacon

Organ meats

Pastries

Sweetened tea

Heavy cream

Dates

Peanuts

White flour

Fatty beef

Advisable to limit in diet

Liver

Sweetcorn

Milk chocolate

Cherries

White rice

Hard cheese

White pasta

Artificial creamers

Refined grains

Energy drinks

White sugar

Biscuits

Sweetened cereal

Fried fish

Coconut Water

Processed cheese

Tomatoes

Refined sugar

Sweet sauces

Butter

Cola

Sample ID :

Received :

Precision Prebiotics

Prebiotics are special types of dietary fibers that fuel bacteria in the gut, helping them grow and thrive. Unlike probiotics, which introduce new bacteria, prebiotics feed the bacteria that are already present in the gut.

In this section, we match the unique gut profile from the stool sample analysis, to the most suitable prebiotic supplements, selecting those that are most likely to support the growth of beneficial species based on your specific results.

We have no commercial affiliations with supplement companies, nor are we trying to promote our own prebiotics! Instead this section details the specific prebiotic ingredients that will be most effective based on the stool sample analysis. This allows an educated and targeted choice that can have the greatest positive impact on the gut health and overall well-being.

Based on the stool sample analysis, the most suitable prebiotics formulations will contain:

Most Suitable Prebiotics

Inulin

Resistant starch

Polydextrose

Lactulose

Sample ID :

Received :

References

- 1 Jiang, Y. et al., 2021. Gut microbiota and ocular diseases: a bibliometric and visual analysis. *Frontiers in Cellular and Infection Microbiology*, 11, p.646348.
- 2 Nakamura, Y.K. et al., 2016. Gut microbial alterations in a murine model of Sjögren's syndrome. *Investigative Ophthalmology & Visual Science*, 57(8), pp.3621–3629.
- 3 Zysset-Burri, D.C. et al., 2020. Retinal pigment epithelium dysfunction induced by gut microbiota dysbiosis. *Investigative Ophthalmology & Visual Science*, 61(13), p.13.
- 4 Zhou, Y. et al., 2022. Altered gut microbiota composition in patients with age-related macular degeneration. *Investigative Ophthalmology & Visual Science*, 63(1), p.2.
- 5 Rowan, S. et al., 2017. Involvement of a gut-retina axis in protection against dietary glycemia-induced age-related macular degeneration. *PNAS*, 114(22), pp.E4472–E4481.
- 6 Turnbaugh, P.J. et al., 2006. An obesity-associated gut microbiome with increased capacity for energy harvest. *Nature*, 444(7122), pp.1027–1031.
- 7 Ridaura, V.K. et al., 2013. Gut microbiota from twins discordant for obesity modulate metabolism in mice. *Science*, 341(6150), p.1241214.
- 8 Le Chatelier, E. et al., 2013. Richness of human gut microbiome correlates with metabolic markers. *Nature*, 500(7464), pp.541–546.
- 9 Cani, P.D. et al., 2007. Metabolic endotoxemia initiates obesity and insulin resistance. *Diabetes*, 56(7), pp.1761–1772.
- 10 Cotillard, A. et al., 2013. Dietary intervention impact on gut microbial gene richness. *Nature*, 500(7464), pp.585–588.
- 11 Cryan, J.F. and Dinan, T.G., 2012. Mind-altering microorganisms: the impact of the gut microbiota on brain and behaviour. *Nature Reviews Neuroscience*, 13(10), pp.701–712.
- 12 Foster, J.A. and McVey Neufeld, K.A., 2013. Gut–brain axis: how the microbiome influences anxiety and depression. *Trends in Neurosciences*, 36(9), pp.305–312.
- 13 Carabotti, M. et al., 2015. The gut–brain axis: interactions between enteric microbiota, central and enteric nervous systems. *Annals of Gastroenterology*, 28(2), pp.203–209.
- 14 Sampson, T.R. and Mazmanian, S.K., 2015. Control of brain development, function, and behavior by the microbiome. *Cell Host & Microbe*, 17(5), pp.565–576.
- 15 Bastiaanssen, T.F.S. et al., 2019. Making sense of...the microbiome in psychiatry. *International Journal of Neuropsychopharmacology*, 22(11), pp.661–682.
- 16 Tang, W.H.W. et al., 2017. Gut microbiota in cardiovascular health and disease. *Circulation Research*, 120(7), pp.1183–1196.
- 17 Wang, Z. et al., 2011. Gut flora metabolism of phosphatidylcholine promotes cardiovascular disease. *Nature*, 472(7341), pp.57–63.
- 18 Koeth, R.A. et al., 2013. Intestinal microbiota metabolism of L-carnitine promotes atherosclerosis. *Nature Medicine*, 19(5), pp.576–585.
- 19 Jonsson, A.L. and Bäckhed, F., 2017. Role of gut microbiota in atherosclerosis. *Nature Reviews Cardiology*, 14(2), pp.79–87.
- 20 Jie, Z. et al., 2017. The gut microbiome in atherosclerotic cardiovascular disease. *Nature Communications*, 8(1), p.845.
- 21 Salem, I. et al., 2018. The gut microbiome as a major regulator of the gut–skin axis. *Frontiers in Microbiology*, 9, p.1459.
- 22 O'Neill, C.A. et al., 2016. The gut–skin axis in health and disease: A paradigm with therapeutic implications. *BioEssays*, 38(11), pp.1167–1176.
- 23 De Pesssemier, B. et al., 2021. Gut–skin axis: current knowledge of the interrelationship between intestinal and skin microbiota. *Microorganisms*, 9(2), p.353.
- 24 Lee, S.Y. et al., 2018. Microbiome in the gut–skin axis in atopic dermatitis. *Allergy, Asthma & Immunology Research*, 10(4), pp.354–362.

References

25 Bowe, W.P. and Logan, A.C., 2011. Acne vulgaris, probiotics and the gut–brain–skin axis – back to the future? *Gut Pathogens*, 3(1), p.1.

26 Budden, K.F. et al., 2017. Emerging pathogenic links between microbiota and the gut–lung axis. *Nature Reviews Microbiology*, 15(1), pp.55–63.

27 Dang, A.T. and Marsland, B.J., 2019. Microbes, metabolites, and the gut–lung axis. *Mucosal Immunology*, 12(4), pp.843–850.

28 Marsland, B.J., Trompette, A. and Gollwitzer, E.S., 2015. The gut–lung axis in respiratory disease. *Annals of the American Thoracic Society*, 12(Supplement 2), pp.S150–S156.

29 Dumas, A. et al., 2018. The role of the lung microbiota and the gut–lung axis in respiratory infectious diseases. *Cellular Microbiology*, 20(12), e12966.

30 Enaud, R. et al., 2020. The gut–lung axis in health and respiratory diseases: A place for inter-organ and inter-kingdom crosstalks. *Frontiers in Cellular and Infection Microbiology*, 10, p.9.

31 Virili, C. et al., 2019. Gut microbiota and Hashimoto’s thyroiditis. *Reviews in Endocrine and Metabolic Disorders*, 20, pp.465–472.

32 Zhao, F. et al., 2018. Alterations of the gut microbiota in Hashimoto’s thyroiditis patients. *Thyroid*, 28(2), pp.175–186.

33 Ishaq, H.M. et al., 2018. Molecular estimation of alteration in intestinal microbial composition in Hashimoto’s thyroiditis. *International Journal of Molecular Sciences*, 19(9), p.2897.

34 Zhou, Y. et al., 2020. Gut microbiota dysbiosis in patients with thyroid nodules. *Frontiers in Cellular and Infection Microbiology*, 10, p.505015.

35 Liu, Y. et al., 2021. Correlation between gut microbiota and autoimmune thyroid disease. *Frontiers in Cell and Developmental Biology*, 9, p.582818.

36 Al-Naggar, Y. et al., 2022. The gut microbiota–hormone axis in endocrine health and disease. *Endocrine Reviews*, 43(2), pp.173–192.

37 Bajaj, J.S. et al., 2020. Gut microbial patterns in female hormonal health. *Journal of Clinical Endocrinology & Metabolism*, 105(8), pp.2502–2513.

38 Łagowska, K. et al., 2022. Role of the gut microbiota in hormonal balance. *Nutrients*, 14(4), p.793.

39 Chen, Y. et al., 2020. Gut microbiota and sex hormone levels in polycystic ovary syndrome. *Frontiers in Endocrinology*, 11, p.273.

40 Tremellen, K. and Pearce, K., 2020. Dysbiosis of Gut Microbiota (DOGMA) – a novel theory for the development of Polycystic Ovarian Syndrome. *Medical Hypotheses*, 94, pp.93–97.

41 Tripathi, A. et al., 2018. The gut–liver axis and the intersection with the microbiome. *Nature Reviews Gastroenterology & Hepatology*, 15(7), pp.397–411.

42 Albillos, A., de Gottardi, A. and Rescigno, M., 2020. The gut–liver axis in liver disease: Pathophysiological basis for therapy. *Journal of Hepatology*, 72(3), pp.558–577.

43 Compare, D. et al., 2012. Gut–liver axis: the impact of gut microbiota on non-alcoholic fatty liver disease. *Nutrition, Metabolism and Cardiovascular Diseases*, 22(6), pp.471–476.

44 Sarin, S.K. et al., 2019. Gut microbiome in liver disease. *Gastroenterology Clinics of North America*, 48(2), pp.389–403.

45 Le Roy, T. et al., 2013. Gut microbiota regulation of bile acid metabolism controls the impact of fat intake on liver steatosis. *Cell Metabolism*, 17(2), pp.225–235.

46 Scher, J.U. et al., 2013. Expansion of intestinal *Prevotella copri* correlates with enhanced susceptibility to arthritis. *eLife*, 2, e01202.

47 Maeda, Y. and Takeda, K., 2019. Role of gut microbiota in rheumatoid arthritis. *Journal of Clinical Medicine*, 6(6), p.60.

48 Breban, M. et al., 2017. Faecal microbiota study reveals specific dysbiosis in spondyloarthritis. *Annals of the Rheumatic Diseases*, 76(9), pp.1614–1622.

Sample ID :

Received :

References

49 Marietta, E.V. et al., 2016. Suppression of inflammatory arthritis by human gut-derived *Prevotella histicola* in humanized mice. *Arthritis & Rheumatology*, 68(2), pp.287–295.

50 Zhang, X. et al., 2015. The oral and gut microbiomes are perturbed in rheumatoid arthritis and partly normalized after treatment. *Nature Medicine*, 21(8), pp.895–905.

51 Budden, K.F. et al., 2017. Emerging pathogenic links between microbiota and the gut–lung axis. *Nature Reviews Microbiology*, 15(1), pp.55–63.

52 Dang, A.T. and Marsland, B.J., 2019. Microbes, metabolites, and the gut–lung axis. *Mucosal Immunology*, 12(4), pp.843–850. 53 Marsland, B.J., Trompette, A. and Gollwitzer, E.S., 2015. The gut–lung axis in respiratory disease. *Annals of the American Thoracic Society*, 12(Supplement 2), pp.S150–S156.

54 Dumas, A. et al., 2018. The role of the lung microbiota and the gut–lung axis in respiratory infectious diseases. *Cellular Microbiology*, 20(12), e12966.

55 Enaud, R. et al., 2020. The gut–lung axis in health and respiratory diseases: A place for inter-organ and inter-kingdom crosstalks. *Frontiers in Cellular and Infection Microbiology*, 10, p.9.

56 Virili, C. et al., 2019. Gut microbiota and Hashimoto’s thyroiditis. *Reviews in Endocrine and Metabolic Disorders*, 20, pp.465–472.

57 Zhao, F. et al., 2018. Alterations of the gut microbiota in Hashimoto’s thyroiditis patients. *Thyroid*, 28(2), pp.175–186.

58 Ishaq, H.M. et al., 2018. Molecular estimation of alteration in intestinal microbial composition in Hashimoto’s thyroiditis. *International Journal of Molecular Sciences*, 19(9), p.2897.

59 Zhou, Y. et al., 2020. Gut microbiota dysbiosis in patients with thyroid nodules. *Frontiers in Cellular and Infection Microbiology*, 10, p.505015.

60 Liu, Y. et al., 2021. Correlation between gut microbiota and autoimmune thyroid disease. *Frontiers in Cell and Developmental Biology*, 9, p.582818.

61 Al-Naggar, Y. et al., 2022. The gut microbiota–hormone axis in endocrine health and disease. *Endocrine Reviews*, 43(2), pp.173–192.

62 Bajaj, J.S. et al., 2020. Gut microbial patterns in female hormonal health. *Journal of Clinical Endocrinology & Metabolism*, 105(8), pp.2502–2513.

63 Łagowska, K. et al., 2022. Role of the gut microbiota in hormonal balance. *Nutrients*, 14(4), p.793.

64 Chen, Y. et al., 2020. Gut microbiota and sex hormone levels in polycystic ovary syndrome. *Frontiers in Endocrinology*, 11, p.273.

65 Tremellen, K. and Pearce, K., 2020. Dysbiosis of Gut Microbiota (DOGMA) – a novel theory for the development of Polycystic Ovarian Syndrome. *Medical Hypotheses*, 94, pp.93–97.

66 Tripathi, A. et al., 2018. The gut–liver axis and the intersection with the microbiome. *Nature Reviews Gastroenterology & Hepatology*, 15(7), pp.397–411.

67 Albillos, A., de Gottardi, A. and Rescigno, M., 2020. The gut–liver axis in liver disease: Pathophysiological basis for therapy. *Journal of Hepatology*, 72(3), pp.558–577.

68 Compare, D. et al., 2012. Gut–liver axis: the impact of gut microbiota on non-alcoholic fatty liver disease. *Nutrition, Metabolism and Cardiovascular Diseases*, 22(6), pp.471–476.

69 Sarin, S.K. et al., 2019. Gut microbiome in liver disease. *Gastroenterology Clinics of North America*, 48(2), pp.389–403.

70 Le Roy, T. et al., 2013. Gut microbiota regulation of bile acid metabolism controls the impact of fat intake on liver steatosis. *Cell Metabolism*, 17(2), pp.225–235.

71 Scher, J.U. et al., 2013. Expansion of intestinal *Prevotella copri* correlates with enhanced susceptibility to arthritis. *eLife*, 2, e01202.

Sample ID :

Received :

References

72 Maeda, Y. and Takeda, K., 2019. Role of gut microbiota in rheumatoid arthritis. *Journal of Clinical Medicine*, 6(6), p.60.

73 Breban, M. et al., 2017. Faecal microbiota study reveals specific dysbiosis in spondyloarthritis. *Annals of the Rheumatic Diseases*, 76(9), pp.1614–1622.

74 Marietta, E.V. et al., 2016. Suppression of inflammatory arthritis by human gut-derived *Prevotella histicola* in humanized mice. *Arthritis & Rheumatology*, 68(2), pp.287–295.

75 Zhang, X. et al., 2015. The oral and gut microbiomes are perturbed in rheumatoid arthritis and partly normalized after treatment. *Nature Medicine*, 21(8), pp.895–905.

76 Budden, K.F. et al., 2017. Emerging pathogenic links between microbiota and the gut–lung axis. *Nature Reviews Microbiology*, 15(1), pp.55–63.

77 Dang, A.T. and Marsland, B.J., 2019. Microbes, metabolites, and the gut–lung axis. *Mucosal Immunology*, 12(4), pp.843–850.

78 Marsland, B.J., Trompette, A. and Gollwitzer, E.S., 2015. The gut–lung axis in respiratory disease. *Annals of the American Thoracic Society*, 12(Supplement 2), pp.S150–S156.

79 Dumas, A. et al., 2018. The role of the lung microbiota and the gut–lung axis in respiratory infectious diseases. *Cellular Microbiology*, 20(12), e12966.

80 Enaud, R. et al., 2020. The gut–lung axis in health and respiratory diseases: A place for inter-organ and inter-kingdom crosstalks. *Frontiers in Cellular and Infection Microbiology*, 10, p.9.

81 Virili, C. et al., 2019. Gut microbiota and Hashimoto’s thyroiditis. *Reviews in Endocrine and Metabolic Disorders*, 20, pp.465–472.

82 Zhao, F. et al., 2018. Alterations of the gut microbiota in Hashimoto’s thyroiditis patients. *Thyroid*, 28(2), pp.175–186.

83 Ishaq, H.M. et al., 2018. Molecular estimation of alteration in intestinal microbial composition in Hashimoto’s thyroiditis. *International Journal of Molecular Sciences*, 19(9), p.2897.

84 Zhou, Y. et al., 2020. Gut microbiota dysbiosis in patients with thyroid nodules. *Frontiers in Cellular and Infection Microbiology*, 10, p.505015.

85 Liu, Y. et al., 2021. Correlation between gut microbiota and autoimmune thyroid disease. *Frontiers in Cell and Developmental Biology*, 9, p.582818.

86 Al-Naggar, Y. et al., 2022. The gut microbiota–hormone axis in endocrine health and disease. *Endocrine Reviews*, 43(2), pp.173–192.

87 Bajaj, J.S. et al., 2020. Gut microbial patterns in female hormonal health. *Journal of Clinical Endocrinology & Metabolism*, 105(8), pp.2502–2513.

88 Łagowska, K. et al., 2022. Role of the gut microbiota in hormonal balance. *Nutrients*, 14(4), p.793.

89 Chen, Y. et al., 2020. Gut microbiota and sex hormone levels in polycystic ovary syndrome. *Frontiers in Endocrinology*, 11, p.273.

90 Tremellen, K. and Pearce, K., 2020. Dysbiosis of Gut Microbiota (DOGMA) – a novel theory for the development of Polycystic Ovarian Syndrome. *Medical Hypotheses*, 94, pp.93–97.

91 Tripathi, A. et al., 2018. The gut–liver axis and the intersection with the microbiome. *Nature Reviews Gastroenterology & Hepatology*, 15(7), pp.397–411.

92 Albillos, A., de Gottardi, A. and Rescigno, M., 2020. The gut–liver axis in liver disease: Pathophysiological basis for therapy. *Journal of Hepatology*, 72(3), pp.558–577.

93 Compare, D. et al., 2012. Gut–liver axis: the impact of gut microbiota on non-alcoholic fatty liver disease. *Nutrition, Metabolism and Cardiovascular Diseases*, 22(6), pp.471–476.

94 Sarin, S.K. et al., 2019. Gut microbiome in liver disease. *Gastroenterology Clinics of North America*, 48(2), pp.389–403.

95 Le Roy, T. et al., 2013. Gut microbiota regulation of bile acid metabolism controls the impact of fat intake on liver steatosis.

References

96 Scher, J.U. et al., 2013. Expansion of intestinal *Prevotella copri* correlates with enhanced susceptibility to arthritis. *eLife*, 2, e01202.

97 Maeda, Y. and Takeda, K., 2019. Role of gut microbiota in rheumatoid arthritis. *Journal of Clinical Medicine*, 6(4), p.60.

98 Breban, M. et al., 2017. Faecal microbiota study reveals specific dysbiosis in spondyloarthritis. *Annals of the Rheumatic Diseases*, 76(9), pp.1614–1622.

99 Marietta, E.V. et al., 2016. Suppression of inflammatory arthritis by human gut-derived *Prevotella histicola* in humanized mice. *Arthritis & Rheumatology*, 68(2), pp.287–295.

100 Zhang, X. et al., 2015. The oral and gut microbiomes are perturbed in rheumatoid arthritis and partly normalized after treatment. *Nature Medicine*, 21(8), pp.895–905.

101 Clarke, S.F., Murphy, E.F., O'Sullivan, O., Lucey, A.J., Humphreys, M., Hogan, A., Hayes, P., O'Reilly, M., Jeffery, I.B., Wood-Martin, R. and Kerins, D.M., 2014. Exercise and associated dietary extremes impact on gut microbial diversity. *Gut*, 63(12), pp.1913–1920.

102 Estaki, M., Pither, J., Baumeister, P., Little, J.P., Gill, S.K., Ghosh, S., Légaré, J. and Blais, L., 2016. Cardiorespiratory fitness as a predictor of intestinal microbial diversity and distinct metagenomic functions. *Microbiome*, 4(1), p.42.

103 Allen, J.M., Mailing, L.J., Niemiro, G.M., Moore, R., Cook, M.D., White, B.A., Holscher, H.D. and Woods, J.A., 2018. Exercise alters gut microbiota composition and function in lean and obese humans. *Medicine & Science in Sports & Exercise*, 50(4), pp.747–757.

104 Cronin, O., Barton, W., Skuse, P., Penney, N.C., Garcia-Perez, I., Murphy, E.F., Woods, T., Nugent, H., Fanning, A., Melgar, S. and Falvey, E., 2018. A prospective metagenomic and metabolomic analysis of the impact of exercise and/or whey protein supplementation on the gut microbiome of sedentary adults. *mSystems*, 3(3), e00044-18.

105 Barton, W., Penney, N.C., Cronin, O., Garcia-Perez, I., Molloy, M.G., Holmes, E., Shanahan, F., Cotter, P.D. and O'Sullivan, O., 2018. The microbiome of professional athletes differs from that of more sedentary subjects in composition and particularly at the functional metabolic level. *Gut*, 67(4), pp.625–633.

106 Louis, P. and Flint, H.J., 2017. Formation of propionate and butyrate by the human colonic microbiota. *Environmental Microbiology*, 19(1), pp.29–41.

107 Morrison, D.J. and Preston, T., 2016. Formation of short chain fatty acids by the gut microbiota and their impact on human metabolism. *Gut Microbes*, 7(3), pp.189–200.

108 Koh, A., De Vadder, F., Kovatcheva-Datchary, P. and Bäckhed, F., 2016. From dietary fiber to host physiology: short-chain fatty acids as key bacterial metabolites. *Cell*, 165(6), pp.1332–1345.

109 den Besten, G., van Eunen, K., Groen, A.K., Venema, K., Reijngoud, D.J. and Bakker, B.M., 2013. The role of short-chain fatty acids in the interplay between diet, gut microbiota, and host energy metabolism. *Journal of Lipid Research*, 54(9), pp.2325–2340.

110 Canfora, E.E., Jocken, J.W.E. and Blaak, E.E., 2015. Short-chain fatty acids in control of body weight and insulin sensitivity. *Nature Reviews Endocrinology*, 11(10), pp.577–591.

111 Ríos-Covián, D., Ruas-Madiedo, P., Margolles, A., Gueimonde, M., de los Reyes-Gavilán, C.G. and Salazar, N., 2016. Intestinal short chain fatty acids and their link with diet and human health. *Frontiers in Microbiology*, 7, p.185.

112 Louis, P., Hold, G.L. and Flint, H.J., 2014. The gut microbiota, bacterial metabolites and colorectal cancer. *Nature Reviews Microbiology*, 12(10), pp.661–672.

113 Parada Venegas, D., De la Fuente, M.K., Landskron, G., González, M.J., Quera, R., Dijkstra, G., Harmsen, H.J., Faber, K.N. and Hermoso, M.A., 2019. Short chain fatty acids (SCFAs)-mediated gut epithelial and immune regulation and its relevance for inflammatory bowel diseases. *Frontiers in Immunology*, 10, p.277.

114 Belkaid, Y. and Hand, T.W., 2014. Role of the microbiota in immunity and inflammation. *Cell*, 157(1), pp.121–141.

115 Tilg, H., Zmora, N., Adolph, T.E. and Elinav, E., 2020. The intestinal microbiota fuelling metabolic inflammation. *Nature Reviews Immunology*, 20(1), pp.40–54.

References

116 Honda, K. and Littman, D.R., 2016. The microbiota in adaptive immune homeostasis and disease. *Nature*, 535(7610), pp.75–84.

117 Zhang, M., Sun, K., Wu, Y., Yang, Y., Tso, P. and Wu, Z., 2017. Interactions between gut microbiota, host genetics and diet relevant to development of metabolic syndromes in mice. *ISME Journal*, 11(3), pp.745–756.

118 Man, S.M., Kaakoush, N.O., Mitchell, H.M. and Wilkins, M.R., 2011. The role of bacteria and pattern-recognition receptors in Crohn's disease. *Nature Reviews Gastroenterology & Hepatology*, 8(3), pp.152–168.

119 Sánchez-Pérez, S., Comas-Basté, O., Veciana-Nogués, M.T., Latorre-Moratalla, M.L. and Vidal-Carou, M.C., 2022. Histamine intolerance and the role of gut microbiota: A review. *Nutrients*, 14(14), p.2981.

120 Schink, M., Konturek, P.C. and Tietz, E., 2018. Microbial patterns in histamine intolerance: a potential connection to gut microbiota composition. *American Journal of Physiology-Gastrointestinal and Liver Physiology*, 315(4), pp.G551–G561. 121 Westbroek, I. et al., 2021. Bacterial histamine production and its impact on histamine intolerance and intestinal inflammation. *World Journal of Gastroenterology*, 27(1), pp.43–57.

122 Smolinska, S., Jutel, M., Cramer, R. and O'Mahony, L., 2014. Histamine and gut mucosal immune regulation. *Allergy*, 69(3), pp.273–281.

123 LeBlanc, J.G., Milani, C., de Giori, G.S., Sesma, F., van Sinderen, D. and Ventura, M., 2013. Bacteria as vitamin suppliers to their host: a gut microbiota perspective. *Current Opinion in Biotechnology*, 24(2), pp.160–168.

124 Magnúsdóttir, S. et al., 2015. Systematic genome assessment of B-vitamin biosynthesis suggests co-operation among gut microbes. *Frontiers in Genetics*, 6, p.148.

125 Rowland, I.R., 1991. Nutrition and the gut flora. *Nutrition and Health*, 7(3), pp.153–160.

126 Rossi, M., Amaretti, A. and Raimondi, S., 2011. Folate production by probiotic bacteria. *Nutrients*, 3(1), pp.118–134.

127 Degnan, P.H., Barry, N.A., Mok, K.C., Taga, M.E. and Goodman, A.L., 2014. Human gut microbes use multiple transporters to distinguish vitamin B12 analogs and compete in the gut. *Cell Host & Microbe*, 15(1), pp.47–57.

128 Moriyama, Y. and Kanno, E., 2020. Gut microbiota and absorption of B vitamins. *BioFactors*, 46(4), pp.552–560.

129 Martens, J.H., Barg, H., Warren, M.J. and Jahn, D., 2002. Microbial production of vitamin B12. *Applied Microbiology and Biotechnology*, 58(3), pp.275–285.

130 Kirmiz, N., Galindo, K., Cross, T.L., Luna, E., Salvato, F., Lau, J.T. and Aldrovandi, G.M., 2020. Comparative analysis of fecal short-chain fatty acids and microbiota in breastfed and formula-fed infants. *Frontiers in Microbiology*, 11, p.1133.

131 Allen, R.H. and Stabler, S.P., 2008. Identification and quantitation of cobalamin and cobalamin analogues in human feces. *The American Journal of Clinical Nutrition*, 87(5), pp.1324–1335.

132 Hill, M.J., 1997. Intestinal flora and endogenous vitamin synthesis. *European Journal of Cancer Prevention*, 6(Suppl 1), pp.S43–S45.

133 Flint, H.J., Scott, K.P., Duncan, S.H., Louis, P. and Forano, E., 2012. Microbial degradation of complex carbohydrates in the gut. *Gut Microbes*, 3(4), pp.289–306.

134 Turnbaugh, P.J. et al., 2006. An obesity-associated gut microbiome with increased capacity for energy harvest. *Nature*, 444(7122), pp.1027–1031.

135 Sonnenburg, J.L. and Bäckhed, F., 2016. Diet–microbiota interactions as moderators of human metabolism. *Nature*, 535(7610), pp.56–64.

136 den Besten, G. et al., 2013. The role of short-chain fatty acids in the interplay between diet, gut microbiota, and host energy metabolism. *Journal of Lipid Research*, 54(9), pp.2325–2340.

137 Rowland, I., Gibson, G., Heinken, A., Scott, K., Swann, J., Thiele, I. and Tuohy, K., 2018. Gut microbiota functions: metabolism of nutrients and other food components. *European Journal of Nutrition*, 57(1), pp.1–24.

138 Martínez, I., Kim, J., Duffy, P.R., Schlegel, V.L. and Walter, J., 2010. Resistant starches types 2 and 4 have differential effects on the composition of the fecal microbiota in human subjects. *PLoS One*, 5(11), p.e15046.

References

139 Zeng, H. and Chi, Y., 2015. Gut microbiota-derived metabolites and lipid metabolism: understanding the role of short-chain fatty acids. *Food & Function*, 6(9), pp.2850–2859.

140 El Kaoutari, A., Armougom, F., Gordon, J.I., Raoult, D. and Henrissat, B., 2013. The abundance and variety of carbohydrate-active enzymes in the human gut microbiota. *Nature Reviews Microbiology*, 11(7), pp.497–504.

141 Wu, G.D. et al., 2011. Linking long-term dietary patterns with gut microbial enterotypes. *Science*, 334(6052), pp.105–108.

142 Scott, K.P., Gratz, S.W., Sheridan, P.O., Flint, H.J. and Duncan, S.H., 2013. The influence of diet on the gut microbiota. *Pharmacological Research*, 69(1), pp.52–60.

143 Cryan, J.F. and Dinan, T.G., 2012. Mind-altering microorganisms: the impact of the gut microbiota on brain and behaviour. *Nature Reviews Neuroscience*, 13(10), pp.701–712.

144 Foster, J.A. and McVey Neufeld, K.A., 2013. Gut–brain axis: how the microbiome influences anxiety and depression. *Trends in Neuroscience*, 36(9), pp.305–312.

145 Kelly, J.R. et al., 2016. Breaking down the barriers: the gut microbiome, intestinal permeability and stress-related psychiatric disorders. *Frontiers in Cellular Neuroscience*, 9, p.392.

146 Jiang, H. et al., 2015. Altered gut microbiota profile in patients with generalized anxiety disorder. *Journal of Psychiatric Research*, 63, pp.1–7.

147 Valles-Colomer, M. et al., 2019. The neuroactive potential of the human gut microbiota in quality of life and depression. *Nature Microbiology*, 4(4), pp.623–632.

148 Claus, S.P., Guillou, H. and Ellero-Simatos, S., 2016. The gut microbiota: a major player in the toxicity of environmental pollutants?. *NPJ Biofilms and Microbiomes*, 2, p.16003.

149 Spanogiannopoulos, P., Bess, E.N., Carmody, R.N. and Turnbaugh, P.J., 2016. The microbial pharmacists within us: a metagenomic view of xenobiotic metabolism. *Nature Reviews Microbiology*, 14(5), pp.273–287.

150 Tang, W.H. et al., 2013. Intestinal microbial metabolism of phosphatidylcholine and cardiovascular risk. *New England Journal of Medicine*, 368(17), pp.1575–1584.

151 Haiser, H.J. and Turnbaugh, P.J., 2013. Is it time for a metagenomic basis of therapeutics?. *Science*, 341(6146), pp.955–957.

152 Selwyn, F.P. et al., 2016. Role of intestinal microbiota in xenobiotic metabolism. *Pharmacology & Therapeutics*, 164, pp.67–80.

153 O'Toole, P.W. and Jeffery, I.B., 2015. Gut microbiota and aging. *Science*, 350(6265), pp.1214–1215.

154 Biagi, E. et al., 2016. Gut microbiota and extreme longevity. *Current Biology*, 26(11), pp.1480–1485.

155 Kong, F. et al., 2016. Gut microbiota signatures of longevity. *Current Biology*, 26(18), pp.2454–2464.

156 Claesson, M.J. et al., 2012. Gut microbiota composition correlates with diet and health in the elderly. *Nature*, 488(7410), pp.178–184.

157 Wilmanski, T. et al., 2021. Gut microbiome pattern reflects healthy ageing and predicts survival in humans. *Nature Metabolism*, 3(2), pp.274–286.

